In C++, assignment = copying “bit-by-bit”

int x = 1;
string s = "ABCDE",;

int vy;
string t;

X,

y
t =s,;

In the language C, assignment always meant simple memory copying
bit-by-bit. In C++, it is not always that simple, however the language
tries to adhere to the same behavior most of the time.

Example: Copying a structure
struct Data {
int n;
i
int main() {
Data x = {10};
Data vy;

y = X; // get a copy of x

cout << "x contains " << X.n << endl; // 10
cout << "y contains " << y.n << endl; // 10
y.n = 15;

cout << "x contains " << X.n << endl; // 10
cout << "y contains " << y.n << endl; // 15

Example: Copying a vector

vector<int> x;
x.push_back(1);
X.push_back(2);
x.push_back(3);

vector<int> vy,

y = X,

cout << "x contains "; print_vector(x);
cout << "y contains "; print_vector(y);
cout << endl;

y[1] = 1000;

cout << "x contains "; print_vector(x);
cout << "y contains ", print_vector(y);

Returning a value from a function makes a copy

struct Data {
int arr[10];
b

int main() {
Data Xx;
X = generate();

}

// Create a structure
Data generate() A

Data d;

for (int 1 =0; 1 < 10; 1++) {
d.arr[i] = i#*i;

¥

return d;

}

Returning a value from a function makes a copy

struct Data {
int arr[1000000];

b

int main() {
Data Xx;
X = generate();

}

// Create a structure
Data generate() A

Data d;
for (int 1 = 0; 1 < 1000000; 1++) {
d.arr[i] = i#*i;
}
return d; // Fine, but we don’t want to waste memory!

}

Pointers

A pointer to a variable is the address in the memory of that variable.

int ten = 10;
int *p = &ten;

cout << p << end;

cout << xp << endl;

&X is the address of the variable x

*P dereferences the pointer p
(returns the value the pointer p points at)

Pointers
string s = ;
cout << s << endl << endl;

string *p = &s;
string *p2 = p;

(#p) [1] = ;
(#p2)[3] = ;

cout << s << endl;
cout << *xp << endl;
cout << xp2 << endl << endl;

cout << &s << endl;
cout << p << endl;
cout << p2 << endl;

Pointers
string s = ;
cout << s << endl << endl;

string *p = &s;
string *p2 = p;

(#p) [1] = ;
(#p2)[3] = ;

cout << s << endl;
cout << *xp << endl;
cout << xp2 << endl << endl;

cout << &s << endl;

cout << p << endl;
cout << p2 << endl;

All three pointers, &s, p, and p2 point to the same thing.

Can we return a pointer from a function?

struct Data {
int arr[1000000];
b

int main() {
Data Xx;
X = generate();

}

Data =*generate() {

Data d;

for (int 1 = 0; 1 < 1000000; 1i++) {

d.arr[1] = 1*1;

}

return &d; // yes technically we can return this pointer
} // but the variable d gets ’'destroyed’ when

// you leave the function

Call stack

int main() {

int arr[5];
arr[0] = one();
arr[1] = two();

cout << arr[0] << endl;
cout << arr[1] << endl;

}

int one() {
return 1;

+

int two() {
int y = one();
int z = one();
return y + z,

}

10

Allocating large data structures in the stack

This is system dependent, but for example on some computer the
following program may work fine:

int main() {
int arr[1000][1000];
arr[0][0] = 1;

}

But the next one will crash (on Linux reporting Segmentation fault):

int main() {
int arr[2000][1000];
arr[0][0] = 1;

}

11

Allocating in the heap

e if we need to allocate a lot of memory (for example large arrays)

e if we want to create and return a big object from a function, and
making additional copies is not an option. (references do mitigate
the issue in C++)

double *pd = new double;

xpd = 1.234;
cout << *pd;

delete pd;

12

Static, automatic, and dynamic variables

Static variables are allocated once at the program startup, and exist
until you exit the program.

Automatic variable is a local variable declared within a block of code, it
is allocated and deallocated automatically when program flow enters
and leaves the block where the variable is declared.

— allocated in the stack

Dynamic variables allocated by request, and not removed automatically.
Have to be deleted when not needed.
— allocated in the heap

13

Correctly returning a pointer from a function

struct Data { int arr[1000000]; };

int main() {
Data *pd = generate();
cout << (xpd).arr[5] << endl;
cout << (xpd).arr[100] << endl;

delete pd;
}

Data =xgenerate() {
Data *p = new Data;
for (int 1 = 0; 1 < 1000000; 1++) {
(*p).arr[1] = 1*1;
¥

return p;

14

