Fibonacci Numbers. Solving Linear Recurrences

Consider a recurrence

An example:

$$
f(n)=f(n-1)+f(n-2)
$$

Consider a recurrence

An example:

$$
\begin{aligned}
& f(n)=f(n-1)+f(n-2) \\
& f(0)=0
\end{aligned}
$$

Consider a recurrence

An example:

$$
\begin{aligned}
& f(n)=f(n-1)+f(n-2) \\
& f(0)=0 \\
& f(1)=1
\end{aligned}
$$

Consider a recurrence

An example:

$$
\begin{aligned}
& f(n)=f(n-1)+f(n-2) \\
& f(0)=0 \\
& f(1)=1
\end{aligned}
$$

$0,1,1,2,3,5,8,13,21,34, \ldots \quad$ Fibonacci numbers

Consider a recurrence

An example:

$$
\begin{aligned}
& f(n)=f(n-1)+f(n-2) \\
& f(0)=0 \\
& f(1)=1
\end{aligned}
$$

When solving a linear recurrence like this, first, we are looking for a solution in the form

$$
f(n)=x^{n}
$$

We get

$$
x^{n}=x^{n-1}+x^{n-2}
$$

Consider a recurrence

$$
\begin{aligned}
& f(n)=f(n-1)+f(n-2) \\
& f(0)=0 \\
& f(1)=1 \\
& \\
& x^{n}=x^{n-1}+x^{n-2} \quad \text { divide by } x^{n-2} \\
& x^{2}= x+1
\end{aligned}
$$

So, we have to solve the quadratic equation

$$
x^{2}-x-1=0
$$

It is called the characteristic equation of the recurrence.

Quadratic equations

Recall that to solve a quadratic equation

$$
a x^{2}+b x+c=0
$$

We compute the discriminant

$$
\Delta=b^{2}-4 a c .
$$

If $\Delta \geq 0$ there are two solutions (roots):

$$
x_{1}=\frac{-b+\sqrt{\Delta}}{2 a} \quad \text { and } \quad x_{2}=\frac{-b-\sqrt{\Delta}}{2 a}
$$

If $\Delta<0$, there is no solutions.
Note that if $\Delta=0, x_{1}=x_{2}$.

Consider a recurrence

Solve the characteristic equation

$$
x^{2}-x-1=0
$$

The discriminant:

$$
\Delta=(-1)^{2}-4 \cdot 1 \cdot(-1)=1+4=5 \geq 0
$$

So, the solutions (roots) are

$$
x_{1}=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad x_{2}=\frac{1-\sqrt{5}}{2}
$$

Consider a recurrence

$$
\begin{aligned}
& f(n)=f(n-1)+f(n-2) \\
& f(0)=0 \\
& f(1)=1 \\
& x_{1}=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad x_{2}=\frac{1-\sqrt{5}}{2}
\end{aligned}
$$

So were were looking for the solution of the first equation of the recurrence in the form $f(n)=x^{n}$. We found two:

$$
f(n)=x_{1}^{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n} \quad f(n)=x_{2}^{n}=\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Good, but this is not the end. We have to satisfy the boundary conditions too.

Consider a recurrence

$$
\begin{aligned}
& f(n)=f(n-1)+f(n-2) \\
& f(0)=0 \\
& f(1)=1 \\
& x_{1}=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad x_{2}=\frac{1-\sqrt{5}}{2}
\end{aligned}
$$

Consider a linear combination of x_{1}^{n} and x_{2}^{n} with yet unknown coefficients b and c :

$$
f(n)=b x_{1}^{n}+c x_{2}^{n}
$$

Consider a recurrence

$$
\begin{gathered}
f(n)=f(n-1)+f(n-2) \\
f(0)=0 \\
f(1)=1 \\
f(n)=b x_{1}^{n}+c x_{2}^{n} \\
f(n)=b\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c\left(\frac{1-\sqrt{5}}{2}\right)^{n}
\end{gathered}
$$

This $f(n)$ satisfies the first equation it the recurrence too. Let's show that.

Consider a recurrence

$$
f(n)=b x_{1}^{n}+c x_{2}^{n}
$$

x_{1} and x_{2} are the roots of the characteristic equation:

$$
\begin{aligned}
& x_{1}^{n}=x_{1}^{n-1}+x_{1}^{n-2} \\
& x_{2}^{n}=x_{2}^{n-1}+x_{2}^{n-2}
\end{aligned}
$$

Multiply the equations by b and c, respectively, and add them up:

$$
\underbrace{b x_{1}^{n}+c x_{2}^{n}}_{=f(n)}=\underbrace{b x_{1}^{n-1}+c x_{2}^{n-1}}_{=f(n-1)}+\underbrace{b x_{1}^{n-2}+c x_{2}^{n-2}}_{=f(n-2)}
$$

Therefore, the linear combination $f(n)=b x_{1}^{n}+c x_{2}^{n}$ satisfies the first equation of the recurrence too:

$$
f(n)=f(n-1)+f(n-2)
$$

Consider a recurrence

$$
\begin{aligned}
& f(n)=f(n-1)+f(n-2) \\
& f(0)=0 \\
& f(1)=1
\end{aligned}
$$

The proposed solution

$$
f(n)=b x_{1}^{n}+c x_{2}^{n}=b\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

has to satisfy the boundary conditions

$$
\begin{aligned}
& f(0)=b\left(\frac{1+\sqrt{5}}{2}\right)^{0}+c\left(\frac{1-\sqrt{5}}{2}\right)^{0}=0 \\
& f(1)=b\left(\frac{1+\sqrt{5}}{2}\right)^{1}+c\left(\frac{1-\sqrt{5}}{2}\right)^{1}=1
\end{aligned}
$$

Consider a recurrence

$$
\begin{aligned}
& f(0)=b\left(\frac{1+\sqrt{5}}{2}\right)^{0}+c\left(\frac{1-\sqrt{5}}{2}\right)^{0}=0 \\
& f(1)=b\left(\frac{1+\sqrt{5}}{2}\right)^{1}+c\left(\frac{1-\sqrt{5}}{2}\right)^{1}=1
\end{aligned}
$$

So, this is a system of two equations and two unknowns b and c

$$
\left\{\begin{array}{l}
b+c=0 \\
b \frac{1+\sqrt{5}}{2}+c \frac{1-\sqrt{5}}{2}=1
\end{array}\right.
$$

From the first equation, $c=-b$. Therefore,

$$
b \frac{1+\sqrt{5}}{2}+(-b) \frac{1-\sqrt{5}}{2}=1 ; \quad b\left(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}\right)=1
$$

Consider a recurrence

$$
\begin{gathered}
b\left(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}\right)=1 \\
b \frac{2 \sqrt{5}}{2}=1 \\
b=\frac{1}{\sqrt{5}} \\
c=-\frac{1}{\sqrt{5}} \\
f(n)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
\end{gathered}
$$

General Linear Recurrence

A general homogeneous linear recurrence

$$
f(n)=a_{1} f(n-1)+a_{2} f(n-2)+\ldots+a_{d} f(n-d)
$$

with boundary conditions:

$$
\begin{aligned}
f(0) & =z_{1}, \\
f(1) & =z_{2}, \\
\cdots & \\
f(d-1) & =z_{d}
\end{aligned}
$$

$f(n)$ is a linear combinations of $f(n-1), \ldots f(n-d)$.
$a_{1}, \ldots a_{d}$ and $z_{1} \ldots z_{d}$ are constants (numbers, in fact).

General Linear Recurrence

Step 1. Find the roots, x_{i}, of the characteristic equation.
Take the recurrence,

$$
f(n)=a_{1} f(n-1)+a_{2} f(n-2)+\ldots+a_{d} f(n-d)
$$

First, assume $f(n)=x^{n}$:

$$
x^{n}=a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots a_{d} x^{n-d}
$$

Divide by x^{n-d} to obtain the characteristic equation:

$$
x^{d}=a_{1} x^{d-1}+a_{2} x^{d-2}+\ldots a_{d}
$$

After solving the equation, we get its roots $x_{1}, x_{2}, \ldots x_{d}$.

General Linear Recurrence

Step 2A. If all roots are distinct, then
The solution of the recurrence is a linear combination of x_{i}^{n} :

$$
f(n)=b_{1} x_{1}^{n}+b_{2} x_{2}^{n}+\ldots+b_{d} x_{d}^{n}
$$

We find the unknown coefficients b_{1}, \ldots, b_{d} from the boundary conditions.

Step 2B. If not all roots are distinct:
If a root x_{i} has multiplicity two, then instead of $b_{i} x_{i}^{n}$, it contributes

$$
b_{i} x_{i}^{n}+c_{i} n x_{i}^{n} \text { to the sum. }
$$

If a root x_{i} has multiplicity three, it contributes

$$
b_{i} x_{i}^{n}+c_{i} n x_{i}^{n}+d_{i} n^{2} x_{i}^{n} .
$$

b_{i}, c_{i}, d_{i} are constants, we find them from the boundary conditions.

