Fibonacci Numbers. Solving Linear Recurrences

Linear Recurrence

An example:

$$f(n) = f(n-1) + f(n-2)$$

Linear Recurrence

An example:

$$f(n) = f(n-1) + f(n-2)$$
  
f(0) = 0

Linear Recurrence

An example:

$$f(n) = f(n-1) + f(n-2)$$
  
f(0) = 0  
f(1) = 1

Linear Recurrence

#### An example:

$$f(n) = f(n-1) + f(n-2)$$
  
f(0) = 0  
f(1) = 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... Fibonacci numbers

Linear Recurrence

An example:

$$f(n) = f(n-1) + f(n-2)$$
  
f(0) = 0  
f(1) = 1

When solving a linear recurrence like this, first, we are looking for a solution in the form

$$f(n) = x^n$$

We get

$$x^n = x^{n-1} + x^{n-2}$$

Linear Recurrence

$$f(n) = f(n-1) + f(n-2)$$
  
f(0) = 0  
f(1) = 1

$$x^n = x^{n-1} + x^{n-2}$$
 divide by  $x^{n-2}$   
 $x^2 = x + 1$ 

So, we have to solve the quadratic equation

$$x^2 - x - 1 = 0$$

It is called the *characteristic equation* of the recurrence.

# **Quadratic equations**

Recall that to solve a quadratic equation

$$ax^2 + bx + c = 0$$

We compute the discriminant

$$\Delta = b^2 - 4ac.$$

If  $\Delta \ge 0$  there are two solutions (roots):

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 and  $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$ 

If  $\Delta < 0$ , there is no solutions.

Note that if  $\Delta = 0$ ,  $x_1 = x_2$ .

Linear Recurrence

Linear Recurrence

Solve the characteristic equation

$$x^2 - x - 1 = 0$$

The discriminant:

$$\Delta = (-1)^2 - 4 \cdot 1 \cdot (-1) = 1 + 4 = 5 \ge 0$$

So, the solutions (roots) are

$$x_1 = \frac{1 + \sqrt{5}}{2}$$
 and  $x_2 = \frac{1 - \sqrt{5}}{2}$ 

Linear Recurrence

$$f(n) = f(n-1) + f(n-2)$$
  

$$f(0) = 0$$
  

$$f(1) = 1$$
  

$$x_1 = \frac{1+\sqrt{5}}{2} \quad \text{and} \quad x_2 = \frac{1-\sqrt{5}}{2}$$

So were were looking for the solution of the first equation of the recurrence in the form  $f(n) = x^n$ . We found two:

$$f(n) = x_1^n = \left(\frac{1+\sqrt{5}}{2}\right)^n \qquad f(n) = x_2^n = \left(\frac{1-\sqrt{5}}{2}\right)^n$$

Good, but this is not the end. We have to satisfy the boundary conditions too.

Linear Recurrence

$$f(n) = f(n-1) + f(n-2)$$
  

$$f(0) = 0$$
  

$$f(1) = 1$$
  

$$x_1 = \frac{1 + \sqrt{5}}{2} \quad \text{and} \quad x_2 = \frac{1 - \sqrt{5}}{2}$$

Consider a linear combination of  $x_1^n$  and  $x_2^n$  with yet unknown coefficients *b* and *c*:

$$f(n) = bx_1^n + cx_2^n$$

Linear Recurrence

$$f(n) = f(n-1) + f(n-2)$$
  
f(0) = 0  
f(1) = 1

$$f(n) = bx_1^n + cx_2^n$$

$$f(n) = b \left(\frac{1+\sqrt{5}}{2}\right)^n + c \left(\frac{1-\sqrt{5}}{2}\right)^n$$

This f(n) satisfies the first equation it the recurrence too. Let's show that.

Linear Recurrence

$$f(n) = bx_1^n + cx_2^n$$

 $x_1$  and  $x_2$  are the roots of the characteristic equation:

$$x_1^n = x_1^{n-1} + x_1^{n-2}$$
$$x_2^n = x_2^{n-1} + x_2^{n-2}$$

Multiply the equations by b and c, respectively, and add them up:

$$\underbrace{bx_1^n + cx_2^n}_{=f(n)} = \underbrace{bx_1^{n-1} + cx_2^{n-1}}_{=f(n-1)} + \underbrace{bx_1^{n-2} + cx_2^{n-2}}_{=f(n-2)}$$

Therefore, the linear combination  $f(n) = bx_1^n + cx_2^n$  satisfies the first equation of the recurrence too:

$$f(n) = f(n-1) + f(n-2)$$

Linear Recurrence

$$f(n) = f(n-1) + f(n-2)$$
  
f(0) = 0  
f(1) = 1

The proposed solution

$$f(n) = bx_1^n + cx_2^n = b\left(\frac{1+\sqrt{5}}{2}\right)^n + c\left(\frac{1-\sqrt{5}}{2}\right)^n$$

has to satisfy the boundary conditions

$$f(0) = b\left(\frac{1+\sqrt{5}}{2}\right)^0 + c\left(\frac{1-\sqrt{5}}{2}\right)^0 = 0$$
$$f(1) = b\left(\frac{1+\sqrt{5}}{2}\right)^1 + c\left(\frac{1-\sqrt{5}}{2}\right)^1 = 1$$

Linear Recurrence

$$f(0) = b\left(\frac{1+\sqrt{5}}{2}\right)^0 + c\left(\frac{1-\sqrt{5}}{2}\right)^0 = 0$$
$$f(1) = b\left(\frac{1+\sqrt{5}}{2}\right)^1 + c\left(\frac{1-\sqrt{5}}{2}\right)^1 = 1$$

So, this is a system of two equations and two unknowns b and c

$$\begin{cases} b+c = 0\\ b\frac{1+\sqrt{5}}{2} + c\frac{1-\sqrt{5}}{2} = 1 \end{cases}$$

From the first equation, c = -b. Therefore,

$$b\frac{1+\sqrt{5}}{2} + (-b)\frac{1-\sqrt{5}}{2} = 1;$$
  $b\left(\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2}\right) = 1$ 

Linear Recurrence

$$b\left(\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2}\right) = 1$$
$$b\frac{2\sqrt{5}}{2} = 1$$
$$b = \frac{1}{\sqrt{5}}$$
$$c = -\frac{1}{\sqrt{5}}$$
$$f(n) = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

# **General Linear Recurrence**

Linear Recurrence

A general homogeneous linear recurrence

$$f(n) = a_1 f(n-1) + a_2 f(n-2) + \ldots + a_d f(n-d)$$

with boundary conditions:

 $f(0) = z_1,$   $f(1) = z_2,$ ...  $f(d-1) = z_d$ 

f(n) is a linear combinations of  $f(n-1), \dots f(n-d)$ .  $a_1, \dots a_d$  and  $z_1 \dots z_d$  are constants (numbers, in fact).

#### **General Linear Recurrence**

Linear Recurrence

Step 1. Find the roots,  $x_i$ , of the characteristic equation. Take the recurrence,

$$f(n) = a_1 f(n-1) + a_2 f(n-2) + \ldots + a_d f(n-d)$$

First, assume  $f(n) = x^n$ :

$$x^{n} = a_{1}x^{n-1} + a_{2}x^{n-2} + \dots + a_{d}x^{n-d}$$

Divide by  $x^{n-d}$  to obtain the characteristic equation:

$$x^{d} = a_1 x^{d-1} + a_2 x^{d-2} + \dots a_d$$

After solving the equation, we get its roots  $x_1, x_2, \dots x_d$ .

# **General Linear Recurrence**

#### Step 2A. If all roots are distinct, then

The solution of the recurrence is a linear combination of  $x_i^n$ :

$$f(n) = b_1 x_1^n + b_2 x_2^n + \ldots + b_d x_d^n$$

We find the unknown coefficients  $b_1, \ldots, b_d$  from the boundary conditions.

#### Step 2B. If not all roots are distinct:

If a root  $x_i$  has multiplicity two, then instead of  $b_i x_i^n$ , it contributes

 $b_i x_i^n + c_i n x_i^n$  to the sum.

If a root  $x_i$  has multiplicity three, it contributes

$$b_i x_i^n + c_i n x_i^n + d_i n^2 x_i^n.$$

 $b_i$ ,  $c_i$ ,  $d_i$  are constants, we find them from the boundary conditions.

Linear Recurrence