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Abstract

Nanopores, biological and artificial, provide capabilities for detection and identifi-

cation of biological analyte molecules, which are electrophoretically driven through

the pore. Apart from the application as a biosensor, electrically tunable nanopores

may be used for controlling the motion of a single biomolecule, which is translocat-

ing through the pore, and also for varying the ionic current flowing through it.

In this work, we develop a model for simulating ionic current through nanopore in

a semiconductor membrane. The approach is based on the Poisson-Nernst-Planck

(PNP) theory, which describes ionic transport in the electrolyte. The model provides

a general method for ionic current simulation for semiconductor-based nanodevices

with arbitrary geometry, however we are primarily focused on nanoporous devices.

In the first part, we consider a nanopore in a solid-state membrane, which is made

of two layers of n- and p- heavily doped silicon material. We apply the electro-

static model to calculate ionic concentrations and electric potential distribution

in the whole system. The ionic current through the pore is estimated using a 1-

dimensional model. The system is investigated at different voltages applied to the

silicon layers, and for three possible geometries of the pore. We provide a system-

atic comparison of these voltage/geometry configurations, and make conclusions

about our ability to control properties of the device, such as the current rectification

ratio, and potential variation in the channel.

In the second part, we provide a detailed description of the numerical techniques,

which are needed to simulate ionic current using the Poisson-Nernst-Planck method:
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a finite-difference discretization of the Nernst-Planck equations, boundary condi-

tions, and a self-consistent iterative procedure. After that, we compare the PNP

model with the results of the 1D technique, which were obtained previously. Fi-

nally, we consider a different membrane structure, which has only one n-Si layer,

“sandwiched” between two oxide layers.

In this system, the spacial distribution of ions in the channel and surface charge on

the walls of the pore bear a resemblance to the distribution of electrons, holes and

doping atoms in MOSFETs. We analyze the I-V characteristics, conductance, and

trans conductance of this ionic transistor. The similarity between this device and

solid-state transistors is discussed.
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Objective

The goal of this work is to develop a model for calculation of the ionic current

through the nanopore in a semiconductor membrane. The basis of our model is

the Poisson-Nernst-Planck theory, which is successfully used for ionic current simu-

lation [39–48]. We want to apply this theory to model ionic current in nanopores

in multilayered semiconductor membranes. Our main objective is to estimate prop-

erties of the modeled nanopores, and search for better designs and devices, which

may be efficiently control by voltages applied to the membrane.
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Chapter 1

Introduction

Since 90’s, when experiments with α-hemolysin showed a possibility of nanopore-

based DNA-sequencing [1], a substantial research work has been done in the area

of physics of biological and artificial nanopores (see reviews [2], [3] and [4]).

Although, this particular field of studies that is focused on biomolecule sensing

is relatively modern, its theory is strongly rooted in well-developed disciplines of

micro- and nanofluidics, semiconductor physics, biology and chemistry. We base

our work on these theories, in attempt to make a successful model that will lead

to new efficient nanopore designs, better understanding of artificial and biologic

channels, and insights into biosensors.

1.1 Applications of Nanopores

Nanopores are an excellent example of nano-devices, which are able to interact ef-

ficiently with ions and biological molecules in aqueous solution. While permeating
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through the pore, these molecules interact with the walls of the pore. Since ions

and most of biological molecules in aqueous solution are charged, electrical inter-

action between these molecules and the nanopore surface is the crucial factor of the

system.

1.1.1 Biological ion channels

While this work is focused on the properties of a nanopore in a semiconductor

membrane, the most vivid example of the effectiveness of nanopores can be found

in living cells, where concentrations of ions in the cytosol and the extracellular

environment are regulated by numerous ion channels – biological nanopores.

Being able to respond to electrical and chemical signals, ion channels play a crucial

role in cell functioning. Some of them have very high selectivity for a specific type

of ions. And nature of this selectivity (for example, as in potassium channel) is a

beautiful result of evolution, that must be inspirational for human-designed nano-

bio-devices.

1.1.2 α-hemolysin

In 1996, Deamer, Branton, Kasianowicz, and colleagues demonstrated [1] that bi-

ological pore, formed by Staphylococcus aureus alpha-toxin (α-hemolysin), can be

used for single-stranded DNA and RNA detection, and also the length of a strand

may be determined from a measured ionic current blockade. It was possible, be-

cause of the geometric and electric properties of the channel. The smallest diam-
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Figure 1.1: Ionic current blockade method using α-hemolysin (from [2]).

eter of the α-hemolysin pore is equal to 1.4 nm, which is less than the diameter

of double-stranded DNA (2 nm). However, a single-stranded DNA molecule can

translocate through the pore, and nucleotides of a strand move through it in se-

quential order, which was considered to be a promising technique for inexpensive

DNA sequencing.

Later, the same ionic current blockade method was used successfully for polyA

and polyC RNA discrimination [6] and similar results were obtained for several

DNA polynucleotides [7]. However, it turned out that such discrimination was a

consequence of the difference in the secondary structure of the polynucleotides

[6]. Nevertheless, more sophisticated techniques should be developed for accurate

biomolecule detection and analysis [2,3].
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1.1.3 Artificial Nanopores

Advances in the technology of semiconductor devices manufacturing provide a pos-

sibility to design artificial nanopores, which can be used to improve and enhance

the existing ionic current blockade technique. Moreover, such devices may employ

approaches borrowed from the traditional electronics, or more novel methods based

on the interaction between a biomolecule and a solid-state device. Properties of the

interface between a solid-state material and electrolyte are of the highest impor-

tance, the surface charge controlled by pH is the basic characteristic of the pore.

Also, additional coating on the solid-state membrane [8] is a very powerful method

to achieve needed properties of the surface.

Being more robust and variable than their biological counterparts, artificial nanopores

are anticipated to be effective in single molecule detection, protein filtering and

analysis of biomolecule properties [4, 9–12]. Semiconductor-based nanopores pro-

vide mechanisms to control ionic currents: Ionic diodes [13, 14], voltage-tunable

ionic field-effect transistors [15–20] and pores in multilayered membranes [21,22]

have been proposed. Transverse electronic transport method [10, 23–25] was pro-

posed for fast DNA sequencing. Another interesting group of nano-scale biosensors

includes carbon nanotubes [26] and nanowires [27], which are based on the older

idea of BioFET [28,29] and ISFET [30–32]. All these approaches can find applica-

tion in lab-on-a-chip devices.

Artificial nanodevices seem to be even more promising, since further improvements

in manufacturing techniques are expected.
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1.2 Models and Simulation methods

Our intention is to build a consistent 3D model of ionic current in a semiconductor

nanopore, however, first, existing models must be examined. In this review, we start

with models of electrical double layer (EDL), which is a very important concept in

nanofluidics and interface science.

Figure 1.2: Gouy-Chapman-Stern model of the solid-electrolyte interface, and the potential

distribution vs the distance from the wall [33].

A solid surface usually acquires some charge when immersed in electrolyte. This

charge comes from chemical dissociation of surface groups or preferential physic-

ochemical adsorption of electrolyte ions [33, 34]. Site-binding model [34, 35] is

used to describe this process. Non-zero fixed charge located at the solid-liquid
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interface, accumulates movable ions in the electrolyte, thus the electrical double

layer (EDL) is formed. This representation of the electrolyte-solid interface is called

Gouy-Chapman(-Stern) model (see [33,34,36] for more details).

1.2.1 Poisson-Boltzmann (PB) theory

Historically, Poisson-Boltzmann approach was used for modeling electrolyte at the

boundary with a solid-state material. It describes a system in equilibrium, where

chemical potential is constant in the electrolyte and, therefore, Boltzmann statistics

for concentrations is applicable.

Poisson’s equation

∇(ε∇ϕ) =−
ρ

ε0
, where charge density ρ = q

N
∑

i=1

Zici,

together with expressions for the local concentrations of mobile ions in the diffuse

layer

ci = cbulk
i exp

�

−
qZi(ϕ−ϕbulk)

kT

�

lead to the following equation:

∇(ε∇ϕ) =−
q

ε0

N
∑

i=1

Zic
bulk
i exp

h

−
qZi(ϕ−ϕbulk)

kT

i

(1.1)

Here, ci and Zi are concentrations and the valence of the ionic species i. N is the

total number of ionic species in the electrolyte. ε is the relative electric permittiv-

ity, and ε0 is the absolute electric permittivity of the vacuum. q is the elementary

charge, k is the Boltzmann constant.

The equation (1.1) is then solved for ϕ. It is usually assumed that ϕbulk = 0 [33,34,
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36]. Concentration cbulk
i are obtained from the bulk electrolyte concentration (for

example, for [KCl]0 = 0.1 M electrolyte, [Cl−]bulk = [K+]bulk = 0.1 M).

If one needs to find ionic concentrations in a cylindrical channel, it is possible to

consider a cylindrical coordinate system. Then, for symmetric electrolyte (i.e. Z ≡

Z+ = −Z−) in a cylindrical channel, the equation (1.1) can be rewritten in the

following form [37,38]:

1

r

d

dr

�

r
dϕ

dr

�

=
2qZcbulk

εε0
sinh

�qZi(ϕ−ϕbulk)
kT

�

(1.2)

Here, the relative permittivity ε is assumed to be constant in the system. This

approach was used, for example, by C. L. Rice and R. Whitehead [37] in 1965,

which was one of the first works on nanofluidics.

Another common approximation is the Debye-Hückel approximation, where expo-

nential functions in (1.1) are linearized, and consequently the hyperbolic sines in

the equations for a symmetric electrolyte (such as eq. (1.2)) are also linearized.

Under this assumption, the equation becomes solvable analytically for many prac-

tical cases. However, obviously, this approximation does not work if |ϕ −ϕbulk| ¦

kT/q ≈ 0.026 V (for T = 300 K). Therefore, it cannot be used in systems with

high surface potential (and large surface charge). Fortunately, the general equation

(1.1) may be easily solved numerically, and the need in approximations is dimin-

ished. However, such approximations are still very convenient for making simple

estimations, and tests for numerical simulation correctness.

Generally speaking, PB approach is applicable to many situations, where equilib-

rium state of charged particles must be modeled, for example, concentrations of

electrons and holes in non-degenerate semiconductor. Physics of charge carriers in
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semiconductors will be described later in the Chapter 2.

If ionic currents in electrolyte are negligible, Poisson-Boltzmann theory works well

for nanodevice simulation [21,27,50].

1.2.2 Poisson-Nernst-Planck (PNP) theory

When currents in the modeled system are non-zero, for example due to applied

voltage, Nernst-Planck equation must be explicitly solved:

∂ c

∂ t
=−∇ · ~J

where current density ~J = −qµc∇ϕ − qDZ∇c has two components: “Drift” and

“diffusion”, respectively. Here, µ is mobility, and D is the diffusion coefficient

D = µ · kT/q.

Exponential formulas for concentrations that are used in Poisson-Boltzmann method

are, in fact, solutions of the Nernst-Planck equation for the system in equilibrium.

In steady state

∇ · ~J = 0

Nernst-Planck equation describes the transport of ionic species in a fluid medium,

and it must be solved for each of them separately, i.e., to simulate KCl solution, we

must solve two equations, for Cl−, and for K+.

For a non-negligible flow of the fluid, ionic current density has one more compo-

nent induced by the velocity of the fluid [33,36], and it requires the Navier-Stocks

equation, which represents conservation of momentum in the system.
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1.2.3 Computer simulations

The PNP approach is widely used to model the ionic transport phenomena in con-

fined spaces such as solid-state nanopores [39, 40] and biological ion channels

[41–48].

The validity of the continuum PNP approach for calculating ionic current in the

nanopore, has been confirmed for pore radii larger than the Debye length [41].

In [41], the ionic current and conductance were calculated via the PNP model and

systematically compared with the results of the Brownian Dynamics simulations of

the ionic solution in nanopores with radii varying from 4 Å to 16 Å. A convergence

between two theories occurred in pores with radius of ∼2 Debye lengths. Thus,

the continuum approach can be used as long as the ionic strength of the solution is

large enough to result in Debye lengths that are smaller than the nanopore radius.

Because Nernst-Planck equations (and Boltzmann statistics) describe both elec-

trolytes and non-degenerate semiconductors, in several papers, solid-state mod-

els and semiconductor device simulators are used to model ionic current [47, 48]

through nanopores. Such view on the electrolyte also may be found in publications,

which use the Poisson-Boltzmann approach [21,22,27,49].

If this similarity between electrolyte and silicon is taken into account, we may intro-

duce a notion of affinity, conduction and valence energy bands, and other properties

of solid-state materials in the electrolyte. Though, one should always have to re-

member that electrons and holes are not ions, there is no recombination of ions, and

all newly introduced energy bands and effective densities of states must be even-

tually converted to properties such as bulk concentration of the solution, surface
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potentials of electrodes, and so on.

In our work, we follow this principle, and represent electrolyte as a non-degenerate

semiconductor material. This approach lets let us to treat the modeled system as

a single heterostructure. Fortunately, an oxide layer always separates silicon mate-

rial, and solution, therefore, there is no direct contact between ions and electrons

and holes. The following chapter provides more details about this representation.

And all equations are put together in the Chapter 3, where the complete model is

formulated.
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Chapter 2

Model of semiconductor

heterostructures

Usually semiconductor device models based on the Poisson-Boltzmann approach

are quite simple, in case there is only one semiconductor material such as Si [53] 1.

However, more detailed treatment is required for heterostructures, which are made

of several different materials (with different band gap Eg or electron affinity χ).

This is the case in our system, where KCl electrolyte is considered to be just another

non-degenerate semiconductor.

The general equations for concentrations of negative and positive charge carriers

1For a heavily doped degenerate semiconductor, the Fermi-Dirac statistics should be used instead

of the Boltzmann’s statistics, however, fortunately, the physical approach remains almost the same

as in the standard PB approach.
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are respectively

n= N eff
C Stat

�EFn− EC

kT

�

, (2.1)

p = N eff
V Stat

�EV − EF p

kT

�

, (2.2)

where EV and EC are energies of the valence and conduction bands, respectively.

EFn and EF p are quasi-Fermi energies for negative and positive charge carriers.

In (2.1) and (2.2), Stat(η) stands for corresponding statistics. In non-degenerate

semiconductor, Stat(η) = exp(η), and it yields Boltzmann statistics. In degenerate

semiconductor, Stat(η) = F1/2(η), which is the Fermi-Dirac integral [54]. In our

model, the latter is used for the heavily doped solid-state membrane, and the former

describes ionic concentrations in the electrolyte, or any semiconductor with low

doping.

In semiconductor, where n and p correspond to electron and hole concentrations,

the effective density of states at the conduction and valence band edges are

N eff
C = 2

�2πm∗n kT

h2

�3/2

N eff
V = 2

�2πm∗p kT

h2

�3/2
,

where m∗n and m∗p are effective masses of electrons and holes.

In KCl electrolyte, negative the charge carriers are Cl−, and the positive charge

carriers are K+ ions. Thus, constants N eff
C and N eff

V can be determined by solving

equations n = [KCl]0 and p = [KCl]0 in the bulk solution, which guarantees the

electrical neutrality on the electrolyte. Also, it will be shown below, how energy

levels EC , EV , EFn, and EF p may be represented in terms of electric potential and

applied voltage, which have explicit meaning in the electrolyte.
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The following discussion is mostly presented in terms of solid-state semiconductors,

though, it may be directly applied to electrolyte materials. Remarks are added,

where necessary.

E0

EC

EV

EF

qχref

Eg
ref

qχ

Eg

qΦref

E0

EC

EV

qχref

Eg
ref

qΦref

qχ

Eg

-qφ

E0

EC

EV

EF

qχref

Eg
ref

qχ
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qΦrefqχ
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-qφ

EF

EF

-qVBI

-qVBI

(a) (b)

(c) (d)

Figure 2.1: Heterojunctions (unbiased). The reference intrinsic semiconductor is shown on the right

side of each junction. (a)→ (b): Left semiconductor is not intrinsic. (c)→ (d): Left semiconductor is

intrinsic.

Since n and p concentrations (2.1, 2.2) are functions of the differences between

energy levels, it is a common practice [56](p.28) [57] to set a zero energy-level

such that quasi-Fermi energies are zero in equilibrium (situation, when no external

forces are applied). In this case, it is convenient to define quasi-Fermi potentials ψn

and ψp, such that EFn =−qψn and EF p =−qψp.

The effective conduction and valence band energies are

EC = E0− qχ

EV = EC − Eg = E0− qχ − Eg ,
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where E0 is the vacuum energy level (see Figure 2.1), and χ is the electron affinity

of the material. In its turn,

E0 =−qϕ+ const, where ϕ is the electric potential. (2.3)

The constant provides freedom to choose a convenient zero-level of the potential

ϕ. It is common [57](p. 10) to consider a reference material that is intrinsic (i.e.

n= p = ni in equilibrium), and has ϕ = 0. Then, the vacuum level in the reference

material is simply

Eref
0 ≡ EF + qΦref = qΦref =

Eref
g

2
+ qχ ref,

Eref
C =

Eref
g

2
, and Eref

V =−
Eref

g

2
.

qΦref is called the work function, and it is the difference between the vacuum level

and the Fermi level. Here we have taken into account that quasi-Fermi-potentials

are zero in equilibrium.

Then, all energy levels in real materials may be referenced to this material. In our

model intrinsic silicon is used as such material.

Non-intrinsic Si (homojunction with the reference material). All energy bands

of doped (non-intrinsic) silicon are shifted by −qϕ, which may be non-zero due to

doping (and then it is called “built-in” or “bulk” potential) or applied voltage:

ESi
0 =

Eref
g

2
+ qχ ref− qϕ,

ESi
C =

Eref
g

2
− qϕ, and ESi

V =−
Eref

g

2
− qϕ.

Here, we assume that the band gap and affinity do not change with increase in

doping, in other words, ESi
g = Eref

g and χSi = χ ref. However it is not exactly true, and

a proper correction may improve the model.
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Therefore, the concentrations are:

nSi = N eff
C F1/2

�q(ϕ−ψn)−
Eref

g

2
kT

�

(2.4)

pSi = N eff
V F1/2

�−q(ϕ−ψp)−
Eref

g

2
kT

�

(2.5)

The difference between two quasi-Fermi potentials ψn and ψp must be taken into

account, if there is a non-negligible current flowing through the junctions in the

modeled system, where the Fermi-level effectively “splits”. Our simulations are

usually made for a single layer of doped silicon, or p-n junction mambranes with

forward bias less than the junction built-in potential, which means that the deple-

tion layer is still present in the junction. In this case, the quasi-Fermi potentials can

be assumed to be constant in silicon, and both are equal to the applied voltage:

ψn =ψp = V (2.6)

These bulk built-in potentials can be obtained from the condition of electroneutral-

ity nSi = N+D for n-doped Si (neglecting pSi and N−A ), and pSi = N−A for p-doped Si

(neglecting nSi and N+D ):

VBI ,n−ψn =F−1
1/2(N

+
D /N

eff
C )kT/q+ Eref

g /2q

VBI ,p −ψp =−F−1
1/2(N

−
A /N

eff
V )kT/q− Eref

g /2q

In a non-degenerate semiconductor, the inverse Fermi-integral may be replaced with

the natural logarithm. Actually, in our model, these equations are not needed for

simulation: Because of the presence of dopant atoms, the self-consistent solution of

Poisson’s equation ensures the electroneutrality of the bulk, and simulations con-

verge to these levels of potential. However, these formulas can be used as initial
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guess for potential:

ϕ = VBI ,n+ V for n-Si, or ϕ = VBI ,p + V for p-Si. (2.7)

If we have two layers of n- and p-doped silicon, which form a p-n junction, the

so-called built-in potential of the junction is equal to the difference (VBI ,n− VBI ,p).

General case. Anderson’s rule [57](p. 9) provides a method to construct a band

diagram of a heterojunction. It is based on a principle that the vacuum energy level

E0 must be continuous, then EC = E0 − qχ and EV = E0 − qχ − Eg . Since χ and

Eg are different on two sides of the heterojunction, conduction and valence bands

have discontinuities, and (EC − Eref
C ) and (EV − Eref

V ) may be expressed as follows

(also see Figure 2.1):

EC − Eref
C = qχ ref− qχ

EV − Eref
V = Eref

g − Eg + qχ ref− qχ

Intrinsic heterojunction. Using Anderson’s rule, concentration of charge carriers

in arbitrary intrinsic semiconductor material with respect to the reference material

can be represented:

n= N eff
C F1/2

�q(ϕ−ψ)−
Eg

2
+
hEg

2
−

Eref
g

2
+ q(χ −χref)

i

kT

�

(2.8)

p = N eff
V F1/2

�−q(ϕ−ψ)−
Eg

2
−
hEg

2
−

Eref
g

2
+ q(χ −χref)

i

kT

�

(2.9)

The built-in (equilibrium) potential in the material is

VBI =−
1

q

hEg

2
−

Eref
g

2
+ q(χ −χref)

i

(2.10)
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This potential corresponds to the total band bending (as shown in Figure 2.1 (c →

d))

We use this equations to calculate concentrations of ions in KCl solution in the

electrostatic problem. However, instead of Fermi-integrals F1/2(η), the Boltzmann

statistics must be used (see equations (3.4) and (3.5)). Note, that in the electro-

static problem, the quasi-Fermi potentials ψ= 0 in KCl.

When the Nernst-Planck equations are solved to find ionic concentrations, equations

(2.8) and (2.9) are not needed, however the built-in potential VBI is still required

for the boundary conditions for ϕ.

Assuming ohmic boundary condition [57](p.53), for a biased semiconductor in a

heterostructure with applied voltage V (with respect to the reference material) the

boundary conditions for the electric potential and the quasi-Fermi potentials are

ϕ = VBI + V (2.11)

ψn =ψp = V (2.12)

Note, that similar equations (2.6 and 2.7) are provided in the paragraph about

non-intrinsic Si. However, these equations play different roles in these two cases.

When Nernst-Planck equations are used to calculate concentrations, (2.11) define

boundary conditions. Whereas in non-intrinsic Si, (2.7) can be used as initial guess

for the electric potential in the whole volume, and (2.6) defines quasi-Fermi poten-

tials also in the whole volume of the semiconductor (it is possible, because electric

currents in Si layers are assumed to be negligible in the steady state).
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Chapter 3

Physical model

3.1 Membrane composition

D

26 nm

0.8 nm

2 nm

n-Si

SiO2

Membrane Thickness

Variable

diameter

p-Si
VpVn

DD

n-Si p-Si

SiO

2 nm

VpVn

2 nm

DC (double-conical) SCp (1st single-conical) SCn (2nd single-conical)

(narrow side is

in the n-Si layer)

(narrow side is

in the p-Si layer)

2

n-Si p-Si

Figure 3.1: Modeled geometries of the pore: (Left) symmetric double-conical nanopore; (Center) and

(Right) are single-conical geometries with a narrow side in the p-Si layer or n-Si layer, respectively.

Width of the membrane is 26 nm, thickness of the SiO2 coating is 0.8 nm. Membrane separates two

compartments with KCl solution. Vn and Vp are voltages, which are applied to corresponding silicon

layers.

In our work, we modeled several membrane compositions and nanopore geome-

tries. However, most of the results were obtained for a semiconductor membrane
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that consists of two layers of n- and p- heavily-doped Si. The membrane is immersed

into fully dissociated KCl electrolyte with concentration [KCl]0 = 0.1 M . Three an-

alyzed pore geometries are shown in Figure 3.1, one symmetric double-conical and

two single-conical configurations.

Such membrane structure had been proposed in previous publications [16, 17, 21,

22], and it has the following advantages:

• Semiconductor layers with applied voltages Vn and Vp work as gates, control-

ling potential in the pore.

• p-n junction produces high gradient of the electric potential inside the pore.

• Two silicon layers make system more versatile than only one.

The system is characterized by the following variables:

• ϕ, electric potential;

• n and p, concentrations of electrons and holes in silicon;

• [Cl−] and [K+], concentrations of ions in KCl solution.

Note that it is possible to choose a different set of variables. Several alternatives

exist, for example, concentrations may be replaced by corresponding quasi-Fermi-

potentials. (see [56](“Dependent Variables”, p. 134) and [36](“Logarithmic Trans-

form of the Nernst-Planck Equations”, p. 258) for details). Such alternatives have

some advantages as well as disadvantages. However, for the general case, our

choice may be considered optimal.
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3.2 Mathematical formulation of the problem

In this section, we summarize the previously described theory, and formulate the

mathematical problem in the form of a boundary value problem.

3.2.1 Poisson’s equation

The electric potential ϕ is determined from the solution of Poisson’s equation:

∇(ε∇ϕ) =−
ρ

ε0
, where (3.1)

ρ = q(−n+ p− N−A + N+D + Nsurf− [Cl−] + [K+]).

ε is the relative permittivity, Nsurf is the equivalent volumetric concentration of

the oxide surface charge (σsurf) on the boundary with [KCl].

3.2.2 Concentrations of electrons and holes in silicon

In silicon, concentrations of electrons n and holes p are calculated using equations

(2.4) and (2.5):

n= N eff
C F1/2

�q(ϕ− V )−
ESi

g

2
kT

�

, (3.2)

p = N eff
V F1/2

�−q(ϕ− V )−
ESi

g

2
kT

�

, where (3.3)

N eff
C = 2

�2πm∗n kT

h2

�3/2
, N eff

V = 2
�2πm∗p kT

h2

�3/2
.

m∗n and m∗p are effective masses of electrons and holes. N−A , N+D are concentrations

of dopant atoms. ESi
g is the band gap in Si. The voltage V = Vn in the n-Si layer, and

it is equal to Vp in the p-Si layer, as shown in Figure 3.2.
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Figure 3.2: Schematic representation of applied voltages V . (Left) Electrostatic case. Voltage VKC L

defines potential in the whole electrolyte. (Right) Nernst-Planck case. VS and VD are different in two

compartments. In both situations, Vn and Vp are applied to silicon layers.

3.2.3 Concentrations of ions

Generally, to find [Cl−] and [K+], we have to solve Nernst-Planck equations. How-

ever, in absence of ionic current, the solution is already known: [Cl−] and [K+]

are governed by the Boltzmann statistics. This electrostatic problem is formulated

below in the Method I.

When current is non-zero, the Nernst-Planck equations must be solved, they are

described in the Method II.

Method I. Electrostatic solution (Boltzmann).

Using equations for charge carriers in intrinsic semiconductor in heterostructure

(2.8) and (2.9):

[Cl−] = N eff
C , [Cl−] exp

�q(ϕ− V )−
EKCl

g

2
− qV KCl

BI

kT

�

(3.4)

[K+] = N eff
V, [K+] exp

�−q(ϕ− V )−
EKCl

g

2
+ qV KCl

BI

kT

�

(3.5)
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The built-in (equilibrium) potential of the electrolyte is

V KCl
BI =−

1

q

hEKCl
g

2
−

ESi
g

2
+ q(χKCl−χSi)

i

(3.6)

Electric potential in bulk electrolyte is ϕ = V + V KCl
BI , Therefore, constants N eff

C , [Cl−]

and N eff
V, [K+] must be equal, and can be determined from the bulk concentration of

KCl:

N eff
C , [Cl−] = N eff

V, [K+] = [KCl]0 exp
�EKCl

g /2

kT

�

We obtain the standard Boltzmann statistics:

[Cl−] = [KCl]0 exp

�

q(ϕ− V − V KCl
BI )

kT

�

(3.7)

[K+] = [KCl]0 exp

�

−q(ϕ− V − V KCl
BI )

kT

�

(3.8)

The electrostatic solution works only for constant voltage V = VKCl applied to the

whole KCl volume (Figure 3.2 (Left)). Otherwise, in the presence of voltage applied

across the membrane (VS 6= VD, as shown in Figure 3.2 (Right)), the Nernst-Planck

equations must be solved explicitly (here, subscripts “S” and “D” stand for “source”

and “drain”).

Method II. Ionic current (Nernst-Planck equation).

Steady state Nernst-Planck equations for ionic current densities:

∇ · ~J = 0

Current densities are

~JCl =−qµ[Cl−]∇ϕ+ qD∇[Cl−],
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~JK =−qµ[K+]∇ϕ− qD∇[K+].

The resulting equations for [Cl−] and [K+] are

∇ · (−µ[Cl−]∇ϕ+ D∇[Cl−]) = 0,

∇ · (−µ[K+]∇ϕ− D∇[K+]) = 0.

Discretization of the Nernst-Planck equations is an important and not a trivial topic,

compared to discretization of the Poisson’s equation, we describe this question in

detail in Chapter 5.

3.2.4 Boundary Conditions

Introducing a reference frame such that axis X is the axis of the pore, and axes Y

and Z are parallel to the plane of the membrane, the boundary conditions may be

defined in the following way:

For potential:

ϕ|x=−Lx/2 = VS + V KCl
BI ,

ϕ|x=Lx/2 = VD + V KCl
BI ,

ϕ

d y

�

�

y=±L y/2
=
ϕ

dz

�

�

z=±Lz/2
= 0.

For ionic concentrations:
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c|x=±Lx/2 = [KCl]0,

(~J · ĵ)|y=±L y/2 = 0,

(~J · k̂)|z=±Lz/2 = 0,

(~J · n̂)|δΓ = 0,

where δΓ is the surface of the membrane, and n̂ is the normal to it.
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Chapter 4

Electrostatic problem

4.1 Introduction

In this chapter, we give analysis of the electric potential profiles in the pore. We

provide estimated I-V curves and demonstrate dependence between the current rec-

tification ratio and the variation of the potential in the nanopore, ∆ϕ = ϕn − ϕp,

where ϕn and ϕp are two potentials from the central axis of the pore as shown in

Figure 4.2. The last part is devoted to ∆ϕ itself. Comparisons of geometries are

provided throughout the text, as well as the effects of voltages applied to silicon

layers. We try to give a systematic comparison of different nanopore geometries,

and evaluate our ability to control their properties.
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4.1.1 Model

Here, we use the electrostatic model described in the previous chapter, which in-

cludes:

1. Poisson’s Equation (3.1),

2. Fermi-Dirac statistics for electrons (3.2) and holes (3.3),

3. Boltzmann Statistics for [Cl−] (3.7) and [K+] (3.8).

4. Boundary conditions for ϕ (Section 3.2.4).

4.1.2 Computational method

Numerical simulations are performed on a uniform, cubic, three-dimensional grid

consisting of 161× 81× 81 grid points with the size of the grid spacing equal to

0.4 nm. Thus, the size of the simulated volume is 64.4 × 32.4 × 32.4 nm3. The

reduction of the grid spacing to 0.2 nm leads to the difference of ∼2 mV for the

average potential in the nanopore vicinity which is about 2% of the total potential

variation in the pore. Our choice of grid spacing allows for fast computation without

significantly sacrificing the precision. Various material constants and simulation

parameters are listed in Table 4.1.

Poisson’s equation is solved iteratively until the self-consistent solution is reached.

The Gummel’s method [56] (p. 211) is used to accelerate convergence. To solve it

for the potential ϕ(~r), the equation 3.1 is first linearized. The linearized differential

equation is solved using an implicit finite difference method [58] that gives a system
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of linear equations. The iteration process is repeated until the relative difference

in the potential values between two consecutive iterations does not exceed 10−7.

More detailed description of the iteration process is provided in the Section 5.2.

4.1.3 Nanopore geometries and membrane biases

We consider three nanopore geometries illustrated in Figure 3.1: Symmetric double-

conical (DC), single-conical with the narrow opening in the p-Si layer (SCp), and

single-conical with the narrow opening in the n-Si layer (SCn).

In single-conical geometries, the larger opening of the pore has the diameter de-

noted by D that we vary between 2 nm and 10 nm. The smaller diameter of the

pore is always fixed at 2 nm. In the double-conical geometry, both outer diameters

are equal to D and are varied while the center diameter fixed at 2 nm. The value of

D = 2 nm makes all three geometries (DC, SCp and SCn) cylindrical and identical.

We study a range of membrane voltage biases between −0.8 V and 0.8 V applied to

the n-Si and p-Si layers, and denoted Vn and Vp, respectively. Throughout the work,

we follow a color scheme in which data pertaining to the DC pore with D = 10 nm

are drawn in blue, data for the SCp pore with the same D are in green, and data

for the SCn pore are in red color. The common cylindrical case (D = 2 nm) is

shown in black color. The data for all other shapes with intermediate diameters are

shown in color variations between black and blue/green/red for DC, SCp, and SCn

geometries, respectively.
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4.2 Results and discussion

4.2.1 Electrostatic potential and ionic concentration

The calculated electric potential through the center of the double-conical pore (DC)

is shown in Figure 4.1. Two distinct membrane biases with Vn = −0.8 V [Fig-

ure 4.1A] and Vn = 0.8 V [Figure 4.1 (B)] are considered with Vp = 0 V in both

situations. The former produces negative potential in the pore on both sides of the

membrane and the latter results in positive potential on the n-Si side of the mem-

brane and negative potential on the p-Si side of the membrane inside the pore. Due

to the presence of negative static charge on the surface of the nanopore, Vn has a

stronger effect on the potential compared to Vp (results are not shown). In general,

we find that large negative biases (Vn ®−0.8 V) applied to the n-Si layer have sim-

ilar effects on the potential in the pore as described above for the specific case of

Vn =−0.8 V.

According to equations (3.7) and (3.8), negatively charged Cl− ions have a high

concentration ([Cl−] > [KC L]0) in the regions with positive potential, and a low

concentration ([Cl−]< [KCl]0) in regions with negative potential. Positively charged

K+ ions follow an opposite trend with [K+] < [KCl]0 for positive potential, and

[K+] > [KCl]0 for negative potential. This is demonstrated in Figs. 4.1(B and

D) where [K+] and [Cl−] concentrations are shown for the DC geometry (D = 6

nm). The resulting variation in ionic concentrations is between 0.02× [KCl]0 and

50× [KCl]0.

The potential profiles for single-conical pores are shown in Figure 4.2(A-D). The
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Figure 4.1: (A) and (B): Profiles of the electrostatic potential ϕ in the double-conical pore for D = 2

nm, 4 nm, 6 nm, and 10 nm. In (A), the membrane bias is Vn =−0.8 V while in (B), Vn = 0.8 V.

Vp = 0 V in both cases. (C) and (D): Cross sections of the ionic concentrations through the center of the

DC pore with D = 6 nm and (Vn, Vp) = (0.8, 0) V.
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Figure 4.2: Profiles of the electrostatic potential ϕ(~r) through the center of the pore for two

single-conical pores. In (A) and (C), the membrane bias is Vn =−0.8 V; in (B) and (D), Vn = 0.8 V.

Vp = 0 V in both cases. In (A) and (C) [(B) and (D)], the potentials are shown for the SCp (SCn)

geometry.
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membrane bias voltages Vn and Vp are the same as for the double-conical nanopore

shown in Figure 4.1. In Figs. 4.1 and 4.2, the common case of cylindrical nanopore

geometry is shown by black curves. We observe that for large pore diameters D,

ϕ(~r) ≈ 0 at the wide end of the pore, and |ϕ(~r)| is the largest at its narrow end.

This is why Vn, when applied to the narrow end of the SCn pore affects the potential

much stronger than Vn in the SCp nanopore where it is applied to the wide end (cf.

curves for diameter D = 10 nm in Figure 4.2 (B) and (D) (red color) with curves

that correspond to the same diameter in Figure 4.2 (A) and (C) (green color)). This

effect is described in more detail below, see the discussion for Figure 4.4. Compar-

ison of Vn and Vp in terms of their ability to control potential distribution is also

provided there.

4.2.2 Characterization of the electrostatic potential in the nanopore

We now perform a general characterization of the potential distribution in the

nanopore. For this purpose we record two values of the potential ϕi, i = n, p,

inside the nanopore near the centers of n-Si and p-Si layers, ϕn = ϕ(x = 26 nm)

(marked by solid square) and ϕp = ϕ(x = 38 nm) (marked by an open square), re-

spectively, see Figure 4.3(A&B). Thus, the value of ϕn is mostly affected by Vn while

the influence of Vp is minimized. Similarly, ϕp is controlled by Vp and it depends

weakly on Vn. Also, we found that ϕn and ϕp potentials are close to the average

potentials on the n-Si and p-Si sides of the pore, respectively.

Cylindrical nanopore. Due to the presence of the dopant ions, the n-Si side of the

membrane has a positively charged depletion layer, whereas the p-Si side of the
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Figure 4.3: (A) The profiles of the electric potential for the cylindrical nanopore (D = 2 nm).

Potentials ϕn and ϕp are marked by solid (�) and open (�) squares, respectively. (B) The cross section

of the electrostatic potential ϕ(~r) for the same pore with two representative potentials ϕn and ϕp

marked as in (A). (C) The potential ϕn as a function of the applied membrane bias voltage Vn

(Vp = 0), and ϕp as a function of Vp (Vn = 0).

membrane has a negatively charged depletion layer near the membrane surface.

Since surface oxide layer (SiO2) is negatively charged, it effectively negates posi-

tively charged depletion layer on the n-Si side, while enhancing negatively charged

depletion layer on the p-Si side. Thus, when no membrane bias is applied, there

is an excess of K+ ions in the pore on the p-Si side of the membrane, while no ex-

cess ions are accumulated on the n-Si side of the membrane. High concentration of

potassium ions screens the electrostatic potential in the pore and makes it difficult

to control p-Si side of the pore with applied membrane bias, as shown below. To

demonstrate this, we plot ϕn as a function of the applied membrane bias voltage Vn

(keeping Vp = 0) and ϕp as a function of Vp (Vn = 0), see Figure 4.3C. We observe
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Figure 4.4: The electrostatic potentials ϕn and ϕp as functions of the applied membrane bias voltage

Vn (Vp = 0) and Vp (Vn = 0) for different nanopore diameters D: (A) Double-conical nanopore (DC);

(B) Single-conical nanopore with the smaller diameter on the p-Si side (SCp); (C) Single-conical

nanopore with the smaller diameter on the n-Si side (SCn).

that the value of ϕn on the n-Si side rises quickly by about 80 mV while ϕp on the

p-Si side grows more slowly by less than 25 mV over the same range of applied

membrane biases.

Non-cylindrical nanopores. In Figure 4.4(A-C) potentials ϕn vs. Vn (with Vp = 0)

and ϕp vs. Vp (with Vn = 0) for the non-cylindrical nanopore geometries with

D = 4 nm and 6 nm are shown. We also show potentials ϕp and ϕn, calculated for

the cylindrical nanopore for reference purposes (black curves). We summarize the

features found in Figure 4.4 as follows.

First we notice that the increase in the nanopore diameter D always leads to the

shrinkage of the available potential range for all three nanopore geometries, cf.

curves with triangles (D = 6 nm) with curves with squares (D = 2 nm) in Figs. 4.4(A,

B and C). This is because the increase in D effectively positions the membrane fur-

ther from the nanopore’s center axis and therefore allows for greater screening by

the electrolyte solution. As a result, the electrostatic potential become less sensi-

tive to the applied membrane bias. In addition, due to the negative surface charge,
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the potential ϕn on the n-Si side of the membrane is more sensitive to the applied

bias voltage for all three geometries. At the same time, the variation of ϕp is re-

stricted to about 10-15 mV, similar to what was found for the cylindrical nanopore

(Figure 4.3C), see the three bottom curves in Figure 4.4(A-C).

Furthermore, out of all considered nanopore geometries besides the cylindrical case,

it is the SCn nanopore, which has the smaller opening on the n-Si side of the mem-

brane, that exhibits a wider range of accessible potentials, and thus, it is better

suited for tunable control over ionic current flowing through the nanopore, which

is further demonstrated in Section 4.2.3. Finally, it is possible that this nanopore

(SCn) will also be better suited to control translocation of a large molecule perme-

ating through the nanopore.
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Figure 4.5: The range of accessible potential differences ∆ϕ obtained by varying Vn and Vp from

−0.8 V to 0.8 V plotted as a function of D for different nanopore geometries: (A) DC, (B) SCp and (C)

SCn.

If we vary both membrane bias voltages (Vn and Vp), we obtain a continuous range
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of potential differences ∆ϕ = ϕn −ϕp available for each structure, see Figure 4.5.

We can tune the applied membrane biases to obtain any specific potential difference

∆ϕ in the pore, within the available range. A particular value of ∆ϕ is closely

related to a particular regime of ion filtering through the pore. For example, a large

potential difference ∆ϕ results in a diode-like ionic current-voltage characteristic

with a large rectification ratio, as shown in the next section. Similarly, ∆ϕ is also

important for controlling biomolecule translocation through the pore. Larger ∆ϕ

means that there is a larger electric field and stronger force applied to a charged

molecule. As such, we are interested in the nanopore membranes with the largest

range of∆ϕ values, and according to Figure 4.5, these are the cylindrical nanopore

and the single-conical nanopore with the smaller opening on the n-Si side of the

membrane (SCn).

4.2.3 Ionic current-voltage characteristics and rectification ra-

tios

We use a model previously described in papers [21, 22, 51] to estimate the ionic

current I through the pore vs. external electrolyte bias V, at constant membrane

voltage bias. In this model we assume that the ionic fluxes are governed by the

Nernst-Planck equation with contributions from ion diffusion and drift. The total

ionic current through the nanopore is given by the sum of the fluxes for all ionic

species. In calculations of ionic fluxes, we use the electrostatic potential which is

the sum of the equilibrium self-consistent potential obtained from the solution of

Poisson’s equation (3.1) and the potential due to the electrolyte bias V (V is assumed
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to drop linearly across the membrane).

-60

-30

0

30

60

-0.2 -0.1 0 0.1 0.2

I 
(p

A
)

V (V)

Cylindrical, D = 2 nm

Vn, Vp

-0.8V, 0.4V
0.8V, -0.8V

2 nm

(A)

-60

-30

0

30

60

-0.2 -0.1 0 0.1 0.2

I 
(p

A
)

V (V)

DC, D = 6 nm

Vn, Vp

-0.8V, 0.4V
0.8V, -0.8V

6 nm

(B)

-60

-30

0

30

60

-0.2 -0.1 0 0.1 0.2

I 
(p

A
)

V (V)

SCp, D = 6 nm

Vn, Vp

-0.8V, 0.4V
0.8V, -0.8V

6 nm

(C)

-60

-30

0

30

60

-0.2 -0.1 0 0.1 0.2

I 
(p

A
)

V (V)

SCn, D = 6 nm

Vn, Vp

-0.8V, 0.4V
0.8V, -0.8V

6 nm

(D)

Figure 4.6: Ionic current-voltage characteristics for different nanopore geometries: (A) Cylindrical

pore; (B) Double-conical pore with D = 6 nm; (C) and (D) Single-conical pores SCp and SCn,

respectively, with D = 6 nm. The semiconductor membrane for each nanopore geometry was biased

with (Vn, Vp) = (−0.8, 0.4) V (green squares), and (Vn, Vp) = (0.8,−0.8) V (red circles).

The ionic current-voltage characteristics that we obtained using this approach are

shown in Figure 4.6 for different nanopore geometries. All subplots in Figure 4.6

contain two current-voltage characteristics calculated for (1) (Vn, Vp) = (−0.8, 0.4) V

(green squares), and (2) (Vn, Vp) = (0.8,−0.8) V (red circles). In case (1), mem-

brane biases result in almost ohmic linear current-voltage characteristic whereas I-V

curves in the second case exhibits non-linear diode-like characteristics. By varying

the applied membrane biases Vn and Vp between −0.8 V and 0.4 V, we were also

able to obtain ionic current-voltage characteristics that fall in between two curves

in Figure 4.6 for each nanopore geometry (not shown).

We calculated the rectification ratio RR for each current-voltage curve as a ratio of
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Figure 4.7: Current rectification ratio RR as a function of the electrostatic potential variation in the

pore ∆ϕ for different nanopore geometries: (A) DC pore; (B) SCp pore; (C) SCn pore. Each plot

includes three families of data points: solid squares are for D = 2 nm, solid circles are for D = 4 nm,

and solid triangles are for D = 6 nm. Each data set was obtained by varying Vn and Vp from −0.8 V to

0.4 V. Large open circles mark membranes biased with (Vn, Vp) = (0.8,−0.8) V for which ∆ϕ is

maximal. Open squares correspond to (Vn, Vp) = (−0.8, 0.4) V when ∆ϕ is minimal.

ionic currents at |V0|= 0.12 V: RR= I(−V0)/I(V0). In Figure 4.7, the rectification ra-

tios as a function of the potential variation in the pore are shown for all considered

nanopore geometries. We find that the rectification ratio depends on the variation

of the electrostatic potential in the nanopore ∆ϕ = ϕn −ϕp, and for all nanopore

geometries this dependence is close to linear. Thus, high values of RR are found for

membranes with large ∆ϕ with diode-like I−V characteristics while small RR’s are

obtained for membranes with small ∆ϕ and linear (ohmic) current dependencies.

We see that the degree of current rectification varies among nanopore geometries.

For cylindrical nanopore [Figure 4.6A] the rectification ratios are the greatest (max-

imum RR ∼ 12). For non-cylindrical nanopores with the same D, the rectification

ratio is the largest for the SCn nanopore as seen in Figs. 4.6(B, C&D). The data

shown in the plots also indicate a wider range of regimes accessible via variations

in membrane biases for the cylindrical and SCn nanopores. This also corroborates

our earlier assessment that single-conical nanopores with narrow openings in n-Si
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ESi
g 1.124 eV

ESiO2
g 9.0 eV

qχSi 4.05 eV

qχSiO2
0.95 eV

εSi 11.70

εSiO2
3.9

N+d 2.0× 1020 cm−3

N−a 2.0× 1020 cm−3

Nsur f −4.0× 1020 cm−3

T 300 K

εKCl 80.0

[KCl]0 0.1 M

Table 4.1: Material parameters and constants. Nsur f corresponds to the surface charge density

σ =−0.16 e/nm2.

are better suited for control of a large molecule translocation.
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Chapter 5

Poisson-Nernst-Planck approach

In this chapter, we demonstrate the proper discretization of the Nernst-Planck equa-

tions, with the description of the self-consistent iterative method.

After that, we apply the Poisson-Nernst-Planck method to several practical prob-

lems. We compare the complete 3D PNP method to the 1D model, which was used

in the previous chapter. Then, the accuracy of the PNP method is checked with

Ohm’s law. The last part contains simulation results obtained for the cylindrical

nanopore in a semiconductor membrane, which is made of three layers: SiO2 – n-

Si – SiO2. This nanopore is designed to resemble the traditional MOS field-effect

transistors. The I-V characteristics and other properties of this ionic transistor are

calculated and discussed.
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5.1 Discretization of the Nernst-Planck equations.

5.1.1 Ionic current density.

The current density of the ionic species with valence Z and concentration distribu-

tion c(~r) in the electrolyte

~J =−qµc∇ϕ− qDZ∇c.

For Cl−: ZCl =−1, c = [Cl−], and for K+: ZK =+1, c = [K+].

Figure 5.1: This picture is a small piece of the grid, centered on the grid-point (i, j, k). Five small

black circles represent the grid-point (i, j, k) itself, and its four neighbors: (i+ 1, j, k), (i− 1, j, k),

(i, j+ 1, k), and (i, j− 1, k). Four big arrows are the current densities J[i+1/2, j], J[i−1/2, j], J[i, j+1/2],

and J[i, j−1/2]. They are defined at the “half-points”, which are marked with the small white circles. The

curly braces below and on the left side show distances between the grid-points. The shaded square is the

“volume” of the grid-point (i, j, k).
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5.1.2 Finite-Difference Discretization.

Following [56], to solve Nernst-Planck equations, the current densities J[i+1/2] and

J[i−1/2] should be used, they are defined in the following way:

J[i+1/2]

q
= (−µc∇ϕ− DZ∇c)|i+1/2 ≈−µ

ci+1+ ci

2
·
ϕi+1−ϕi

hi
− DZ

ci+1− ci

hi
, (5.1)

J[i−1/2]

q
=−µ

ci + ci−1

2
·
ϕi −ϕi−1

hi−1
− DZ

ci − ci−1

hi−1
, (5.2)

where hi is the distance between grid-point i and grid-point i+ 1,

These current densities represent fluxes from i to (i + 1) (equation 5.1), and from

(i − 1) to i (equation 5.2). Here, we have defined current densities only along the

X axis (index i), however the same definitions should be applied to axes Y (index

j) and Z (index k). In the Figure 5.1, four big arrows represent current densities

J[i+1/2, j], J[i−1/2, j], J[i, j+1/2], and J[i, j−1/2].

Using the new notation, the steady state Nernst-Planck equations (in 1D) may be

transformed into the finite-difference representation

div ~J = 0 →
J[i+1/2]− J[i−1/2]

(hi + hi−1)/2
= 0. (5.3)

5.1.3 Nernst-Planck equation in 1D.

If we introduce a common dimensional constant h∗ for the grid (such as 0.1 nm,

1 nm, 1 µm etc.), and multipliers χi specific to each layer of the grid, such that

hi = h∗χi (here, χi is equal to, for example, 1, 2, 4, 8, etc), the equation (5.3) can

be rewritten:

J[i+1/2]− J[i−1/2]

(h∗χi + h∗χi−1)/2
= 0,
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Taking into account (5.1) and (5.2):

1

(h∗χi + h∗χi−1)/2

�

�

−µ
ci+1+ ci

2
·
ϕi+1−ϕi

h∗χi
− DZ

ci+1− ci

h∗χi

�

−

�

−µ
ci + ci−1

2
·
ϕi −ϕi−1

h∗χi−1
− DZ

ci − ci−1

h∗χi−1

�

�

= 0

Therefore,

ci ·
1

h2
∗(χi +χi−1)/2

·
�

µ

2DZ

�ϕi+1−ϕi

χi
−
ϕi −ϕi−1

χi−1

�

−
� 1

χi
+

1

χi−1

�

�

+

ci+1 ·
1

h2
∗(χi +χi−1)/2

·
�

µ

2DZ

ϕi+1−ϕi

χi
+

1

χi

�

+

ci−1 ·
1

h2
∗(χi +χi−1)/2

·
�

µ

2DZ

ϕi −ϕi−1

χi−1
+

1

χi−1

�

= 0

5.1.4 Nernst-Planck equation in 3D.

In 3D, Nernst-Planck equation is a sum of three 1D-equations for each direction x,

y and z

J[i+1/2, j,k]− J[i−1/2, j,k]

(h∗χ x
i + h∗χ

x
i−1)/2

+
J[i, j+1/2,k]− J[i, j−1/2,k]

(h∗χ
y
j + h∗χ

y
j−1)/2

+
J[i, j,k+1/2]− J[i, j,k−1/2]

(h∗χz
k + h∗χ

z
k−1)/2

= 0

This is the linearization of the Nernst-Planck equations, unfortunately, we have

obtained this equation only for grid points, which are located not on the boundaries.

Therefore, it defines only a part of the matrix Mc and the right-hand side vector

(zero) for the system of linear equations Mcc = rhsc. Boundary conditions will

be discussed in the following sections. The obtained system of linear equations,

eventually, must be solved for concentrations c.
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5.1.5 Nernst-Planck equation in 3D and Gauss’s divergence the-

orem

Since h∗χ
x
i and h∗χ

x
i−1 are distances between neighboring grid-points, the spatial

dimensions of the grid-point (i,j,k) may be defined as follows

∆x i, j,k = (h∗χ
x
i + h∗χ

x
i−1)/2

∆yi, j,k = (h∗χ
y
j + h∗χ

y
j−1)/2

∆zi, j,k = (h∗χ
z
k + h∗χ

z
k−1)/2

In Figure 5.1, ∆x i, j,k and ∆yi, j,k are, respectively, the width and the height of the

shaded square. The volume of this grid point is ∆x i, j,k∆yi, j,k∆zi, j,k.

Nernst-Planck equation can be rewritten:

J[i+1/2, j,k]− J[i−1/2, j,k]

∆x i, j,k
+

J[i, j+1/2,k]− J[i, j−1/2,k]

∆yi, j,k
+

J[i, j,k+1/2]− J[i, j,k−1/2]

∆zi, j,k
= 0 (5.4)

If the equation is multiplied by the grid-point volume∆x i, j,k∆yi, j,k∆zi, j,k, we obtain

the integral representation of the same equation (subscripts (i,j,k) are omitted):

∆y∆z(J[i+1/2, j,k]− J[i−1/2, j,k])+∆x∆z(J[i, j+1/2,k]− J[i, j−1/2,k])+

∆x∆y(J[i, j,k+1/2]− J[i, j,k−1/2]) = 0 (5.5)

This equation means that the total flux
∑

κ(~Jκ · ~Areaκ) through the grid-point’s

boundary must be equal to zero. The physical meaning of this equation is the con-

servation of ionic fluxes on the grid. Both equations (5.4) and (5.5) are equivalent,

it means that Gauss’s divergence theorem is applicable locally to each grid-point.

Thus, total fluxes are conserved, moreover, the integral interpretation (5.5) of the

Nernst-Planck equation provides a clear way to define boundary conditions.
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5.1.6 Boundary Conditions

The finite-difference representation of the boundary conditions (section 3.2.4) are

derived directly from the equations (5.5). If the point (i, j, k) is the electrolyte, and

some of the six neighboring points belong to the solid-state membrane, the corre-

sponding current densities in the equation (5.5) are set to be zero. For example, if

(i,j+1,k) grid point is not the electrolyte (e.g. SiO2), then J[i, j+1/2,k] = 0. Conser-

vation of the total flux holds for any shape of the boundary. The same approach is

used in publications [41–43].

The grid points on the boundary of the box are defined in the similar way. Since

axis X corresponds to the axis of the membrane, points x = −Lx/2 and x = Lx/2

must have bulk concentrations, so simple Dirichlet conditions are c(x = ±Lx/2) =

[KCl]0. Four other boundaries: y = ±L y/2 and z = ±Lz/2, may be expressed

using the same zero-flux conditions, as used for points of the electrolyte-membrane

boundary, setting the current densities through the boundary equal to zero:

J[i, j+1/2,k]|y=L y/2 = 0, J[i, j−1/2,k]|y=−L y/2 = 0,

J[i, j,k+1/2]|z=Lz/2 = 0, J[i, j,k−1/2]|z=−Lz/2 = 0.

5.1.7 Current through the pore in YZ cross-section.

The most apparent way to calculate the total ionic current through the pore, is to

sum up fluxes through YZ cross-section at a half-point i+ 1/2.

I(i+ 1/2) =
j=N j−1, k=Nk−1

∑

j, k=0

~J[i+1/2, j,k] · ~A[i+1/2, j,k]
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Area ~A[i+1/2, j,k] = î∆y∆z.

And since ~J · î is equal to x component of the current density, Jx , the equation for

total current inside the pore is the following

I(i+ 1/2) =
∑

j, k

Jx [i+1/2, j,k] ·
h2
∗ · (χ

y
j +χ

y
j−1) · (χ

z
k +χ

z
k−1)

4
(5.6)

5.2 Iterative method

5.2.1 Data representation

All data (such as ϕ, n, p, etc.) are stored in linear vectors 1× Nx Ny Nz.

The norm for such data vectors is defined as a maximum absolute value of the

vector’s element

||v||=max |vi|, where i is the element’s index.

5.2.2 Convergence condition

The iterative process described below is repeated until:

• ||ϕ t −ϕ t−1||< 10−7 V , and

• For all charge carriers concentrations
||ρ t −ρ t−1||
||ρ t−1||

< 10−7.

Here, the notation x t and x t−1 stands for data x calculated at the iteration-step t

and t − 1, respectively.
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5.2.3 Iterative procedure

All the following actions are performed at each step of the iteration:

1. Define matrix M and right-hand-side vector rhs for Poisson’s Equation. It is

done by a simple linearization of the Poisson’s Equation.

Optionally, Gummel’s method is used by adding extra components to left- and

right-sides of the equation:

∇(ε∇ϕ t) + r t−1ϕ t =−
ρ t−1

ε0
+ r t−1ϕ t−1, where

ρ t−1 = q
�

− n+ p− N−A + N+D + Nsurf− [Cl−] + [K+]
�

r t−1 =−
q

kT
[Cl−]−

q

kT
[K+]−

q

kT
N e f f

C F−1/2

�q(ϕ−ψ)−
Eg

2
kT

�

−
q

kT
N e f f

V F−1/2

�−q(ϕ−ψ)−
Eg

2
kT

�

2. Tolerance is determined for the iteration step:

tolt = 0.90 · tolt−1+ 0.10 · (10−4 · ||ϕ t−1−ϕ t−2||)

The initial value for the first iteration is tol0 = 10−5.

In addition, if obtained value is still rather big, i.e. tolt > 10−3 ·||ϕ t−1−ϕ t−2||,

tolt = 0.80 · tolt + 0.20 · (10−4 · ||ϕ t−1−ϕ t−2||)

Then, the value is constrained to be in the range 10−4 < tolt < 10−8.

3. The Poisson’s equation

Mϕ̃ t = rhs
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is solved using the Gauss-Seidel (G-S) or the Bi-conjugate gradient method

(BiCG) with the tolerance tolt , and since both G-S and BiCG methods are

iterative, no more than 1000 internal iterations is allowed for them.

4. The new ϕ t is calculated as follows:

ϕ t = αϕ̃ t + (1−α)ϕ t−1, where

the value ϕ̃ t is obtained from the solution of the Poisson’s equation.

The parameter α is not constant, but slowly increases with each iteration from

0.1 to 0.4:

α=min
�

0.1exp(0.06 · t), 0.4
�

5. Then, the Nernst-Planck equations are solved for ionic concentrations, and

concentration of electrons and holes are calculated from the Fermi-Dirac statis-

tics. Alternatively, at this step, ionic concentrations may be calculated from

Boltzmann’s statistics, and thus, the purely electrostatic solution can be ob-

tained:

(a) The Nernst-Planck equations are transformed to the system of linear

equations:

Mcρ̃
t = rhsc

They are solved using the Gauss-Seidel or Bi-Conjugate Gradient method

with the tolerance 10−8, a number of the internal method iterations is

not larger than 500.

(b) Concentrations of electrons and holes in semiconductor are calculated

from the Fermi-Dirac statistics.
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(c) New concentrations are:

c t = αc c̃
t + (1−αc)c

t−1, where αc = 0.4.

5.3 One-dimensional method for ionic current calcu-

lation, and evaluation of its validity.

In the previous chapter (also see [49]), we demonstrated that ionic conductivity of

the nanopore in a double-layered membrane may be efficiently controlled by the

applied voltages Vn and Vp. The strongest current rectification with the diode-like

I-V curves were obtained for Vn = 0.8 V and Vp = −0.8 V , and almost linear I-V

characteristics were achieved at Vn = −0.8 V and Vp = 0.4 V . Although these re-

sults clearly demonstrate the capability of the semiconductor nanopore device, the

technique used to evaluate currents was not very accurate: The Nernst-Planck equa-

tions were solved only in one dimension, in the assumption that non-zero voltage

applied across the membrane (V ≡ VS − VD) modifies the electrostatic potential in

the pore linearly: ϕ(x) = ϕES(x)+VS+(VD−VS)x/L (L is the membrane thickness,

and 0 ≤ x ≤ L). Here, we check the validity of this approach, and compare I-V

characteristics with solutions of the full three-dimensional Poisson-Nernst-Planck

method.

The electrostatic potential ϕES is obtained for a system in equilibrium, when equa-

tions of the electrostatic problem (3.1, 3.2, 3.3, 3.7, and 3.8) are solved self-

consistently. The one-dimensional data ϕES(x) may be taken either from the center

of the pore ϕES(x) = ϕES(x , y, z)
�

�

y=0, z=0, or each point can be found as the average
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potential 〈ϕES(x , y, z)〉 over the corresponding YZ cross-section of the pore. The

second method would, presumably, work better for wider nanopores with diameter

larger than the doubled Debye length D > 2λD. In this section, we test both pos-

sibilities. The corresponding 1D methods of current estimation are referred to as

“1D-center” and “1D-average” in figures and the text.

5.3.1 I-V characteristics of the 1D and 3D methods
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Figure 5.2: (A, C, E) I-V characteristics and (B, D, F) normalized deviations (5.8) of the 1D methods,

calculated for the Cylindrical pore with the diameter D = 2 nm. Panels (A, B) correspond to zero

voltages on the membrane; (C, D) Vn and Vp with ohmic, and (E, F) diode-like behavior.

I-V curves for a cylindrical geometry are shown in Figure 5.2 (plots corresponding

to other geometries and voltages are shown in the Appendix A). In most cases both

1D methods produce quite good results, especially for small voltages |V | < 0.1 V

applied across the membrane. However, for some voltages, estimated curves do

not fit very well (such as in Figure 5.2 (E)). Simulations show that usually “1D-
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center” method works better for negative V , which corresponds to forward bias in

the diode-like I-V curves. The “1D-average” method is usually better for positive V

(reverse bias), when current is saturated.

5.3.2 Quantitative estimation of the difference between 1D and

3D methods

To obtain a quantitative measure of the similarity between I-V curves, we calculate

the root-mean squared deviation of the 1D solution I(V ) from the “ideal” I3D(V ), or

integral representation of this deviation:

RMSD[I(V )](Vl im) =

√

√

√

√

∑

|V |≤Vl im

�

I(V )− I3D(V )
�2

∑

|V |≤Vl im
1

≈

√

√

√

√

∫ Vl im

−Vl im

�

I(V )− I3D(V )
�2dV

2Vl im

(5.7)

Here, parameter Vl im defines a scope, in which the comparison is performed. We

normalize RMSD[I(V )](Vl im) by the magnitude of I3D(V ) variation in the region |V | ≤

Vl im:

N.RMSD[I(V )](Vl im) =
RMSD[I(V )](Vl im)

max|V |≤Vl im
I3D(V )−min|V |≤Vl im

I3D(V )
(5.8)

Here, continuous I-V characteristics of the 3D method I3D(V ) were obtained via

interpolation of the discrete data points with cubic splines (using the algorithm

from the GNU Scientific Library).

Results are shown in the Table 5.1. For all geometries, we calculate the normalized

RMS deviation for Vl im = 0.1 V and 0.2 V . Also, the complete plots of N.RMSD vs.

Vl im are shown in the Appendix A.

The current in the cylindrical pore has errors less than 10% in most cases, except
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“Center” “Average”

Geometry Vn Vp N.RMSD (%) estimated for Vl im :

0.1 V 0.1 V

0.2 V 0.2 V

Cyl, 2 nm 0.0 V 0.0 V 3.3 3.1 7.5 3.2

-0.8 V 0.4 V 8.0 8.8 2.4 4.2

0.8 V -0.8 V 5.5 2.5 19.0 11.8

DC, 6 nm 0.0 V 0.0 V 7.8 10.9 6.4 16.8

-0.8 V 0.4 V 5.4 2.7 7.1 10.2

0.8 V -0.8 V 11.6 10.0 9.0 9.0

SCn, 6 nm 0.0 V 0.0 V 16.9 25.4 16.2 46.7

-0.8 V 0.4 V 5.1 3.9 14.0 16.5

0.8 V -0.8 V 19.0 22.5 5.5 30.2

SCp, 6 nm 0.0 V 0.0 V 5.9 8.2 7.2 7.3

-0.8 V 0.4 V 5.9 4.9 9.2 10.1

0.8 V -0.8 V 10.6 10.2 13.7 8.2

Table 5.1: Values of N.RMSD[I(V )](Vl im) for cylindrical, double-conical and two single-conical

geometries, calculated for Vl im = 0.1 V and 0.2 V .
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the most diode-like I-V (Vn = 0.8 V , Vp = −0.8 V ). However, as it can be seen in

Figure 5.2, the difference in this worst case is not extremely large, and the shape

of the curve is the same. The DC and SCp geometries also demonstrate very good

correspondence between 1D and 3D methods: The error rarely exceeds 10%.

5.4 Oxide Membrane.

To prove correctness of the simulations, we tested the program on a dielectric mem-

brane with no surface charge. Such estimation is straight-forward if two facts are

considered:

1. Cylindrical nanopore in such membrane must have uniformly distributed [K+] =

[Cl−] = [KCl]0, and the current is produced only by the drift component:

qµ[KCl]0∇ϕ.

2. The magnitude of the electric field. The current of each ion species must be

constant for each cross-section, and I ∝ ~E · ~Area. The size of the modeled

system is approximately 17 nm × 17 nm × 53 nm, and the diameter of the

pore is 2 nm, so the cross-sectional area is varying from 172 nm2 outside to

π nm2 inside the pore. The ratio of this areas is 172/π≈ 92 1. Therefore, the

electric field inside the pore is ≈ 92 times larger that outside the pore, and

we safely can assume that the voltage drop is happening only inside the pore.

Using Ohm’s law, the total current is

I(V ) = 2qµ[KCl]0× (V/L)×πR2 (5.9)
1Moreover, ideally the area ratio must approach infinity, if a much larger volume is modeled.
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Here, the factor of “2” is due to our assumption that both ion species have the same

mobility µ, and their valences are |Z | = 1. The parameter L is the thickness of the

membrane that is equal to 26 nm.

Comparison between simulation and 5.9 is shown in Figure 5.3. The estimation fits

simulation results very well. Also, both used assumptions are correct: concentra-

tions of ions indeed remain constant in the system, and electric potential is changing

linearly in the pore, and is constant outside of it (not shown).
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(|VDS |< 0.4 V) on the right.

5.5 Oxide – n-Si – oxide Membrane.

Being inspired by Metal-Oxide-Semiconductor transistors devices, we propose the

following design of the ionic transistor. The membrane is symmetric, and composed

of three layers: SiO2, n-Si, and again SiO2 as shown in Figure 5.5. The n-Si layers

is 8 nm thick. The total membrane thickness is the same as before — 26 nm. We
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Figure 5.5: SiO2 – n-Si – SiO2 membrane, and the ionic distribution inside the channel for VG = 0.

apply voltage VG to the silicon layer, and it acts as a gate electrode on the electrolyte

solution.

Two oxide layers play crucial part in this setup: The negative surface charge on the

oxide-electrolyte boundary (σ = −0.16e/nm2) attracts [K+] ions, making [K+] ≈

4× [KCl]0, and [Cl−] ≈ 0.25× [KCl]0. Even larger separation is accessible, if the

surface charge is larger, or if additional p-Si layers are added instead of SiO2, as it

was done in [22], however, we try to keep the system not very complicated here.

The electrolyte inside the pore has three distinctive regions (Figure 5.5). Two re-

gions within the oxide layers are similar to the heavily doped Source and Drain

regions of the MOSFET, [K+]� [Cl−]. The central region is adjacent to n-Si, how-

ever is still insulated from it by a thin oxide layer. In unbiased state, [Cl−] > [K+]

in the central region, and the whole transistor is similar to an enhancement-mode

p-channel MOSFET [53] (p. 362). A non-zero voltage VG must be applied to turn it

on.

Terminals that are applied to the electrolyte act as the Source and the Drain termi-

nals. The geometry of our system has reflection symmetry with respect to the plane

of the membrane, therefore, the difference between these two terminals is purely
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nominal. We call the left terminal “Source”, VS, and right is “Drain”, VD. For all the

following measurements, we assume that our ionic transistor and voltage sources

form a common-source electric circuit.
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5.5.1 I-V curves and transconductance.

I-V curves are shown in Figure 5.4. It can be seen clearly that for negative VDS

currents almost saturate (although, they still have a small slope). A negative gate

voltage VGS is necessary to increase this saturation current. The transfer charac-

teristics is shown in Figure 5.6, it demonstrates the efficiency of the gate voltage:

current starts increasing at VGS ≈ −0.1 V with almost constant transconductance

g ≈ 359 pA/V . Unfortunately, current for VGS < 0.6 V does not saturate at reason-

able drain-source voltages, and it makes it difficult to estimate the exact shape of

the transfer characteristics, it is possible that the ideal curve should be a quadratic

function of VGS [53] (p. 353), and not linear. However, in general, the device be-

havior is very similar to standard MOSFETs. The already saturated current slowly
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increases with VDS almost linearly (see Figure 5.4, and the output conductance in

the Figure 5.7 (A)), which is similar to the channel-length modulation in MOSFETs,

and the Early effect in Bipolar Junction Transistors (BJT).

More precise determination of characteristics may be done, probably, for nanopores

with a larger surface charge, and larger layers thickness. Nevertheless, shown re-

sults are already very promising, and the original design can be enhanced to reveal

other properties of the system, as well as to improve performance of the device.
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5.5.2 Conductance for small drain-source bias VDS.

Apart from the total ionic current flowing through the pore, it is reasonable to look

at currents produced by each ionic species separately: I [Cl−] and I [K
+]. The total

current I = I [Cl−]+ I [K
+].

Then, we are able calculate the total Output (differential) conductance g total
o =

dI/dVDS, and corresponding conductances for Cl− and K+: g[Cl−]
o = dI [Cl−]/dVDS,

and g[K
+]

o = dI [K
+]/dVDS. Plots of go vs. VDS are demonstrated in Figure 5.7.
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Now, we would like to investigate properties of the transistor for small VDS. The

case with positive gate voltage VGS = 0.4 V is especially interesting: Although, on

the larger scale, the I-V curve seems to be linear, in fact, it is not. It is shown in the

right panel of the Figure 5.4 that there is a region of relatively high conductance for

|VDS|< 0.1 V (see also Figure 5.7 (A)).

The explanation can be found, if we look at the plots of concentration, which are

shown in Figure 5.8. When magnitude VDS is small, both [Cl−] and [K+] are non-

zero, there is no depletion region inside the pore. However, when the applied drain-

source bias is large enough (see second row in the Figure 5.8), concentrations are

approaching zero, and the current becomes saturated. For VGS = 0.4 V this is the

case for both positive and negative VDS. The system resembles two diodes connected

as in a PNP BJT, and current quickly saturates for both directions of the drain-source

voltage VDS.

Also, we should note that VGS ≤ −0.8 V leads to almost opposite conductive prop-

erties: In the panel (C) of the Figure5.7, conductance g[Cl−]
o for VGS = −0.8 V in-

creases with larger |VDS|. It happens, because the distribution of ions is completely

different from the VGS = 0.4 V case, and concentration of K+ is high in the whole

volume of the pore, and in addition, the Cl− concentration in the channel increases

with larger magnitudes of the drain-source voltage (see Figure 5.8).
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Conclusions

Electrostatic problem

In Chapter 4, we performed a general study of nanopores in a semiconductor mem-

brane made of two layers of n-doped and p-doped Si material. In particular, we

assessed our ability to change nanopore potential by applying voltage to the semi-

conductor membrane layers for different nanopore geometries: cylindrical, dou-

ble conical and single conical. We considered only small pores with diameters of

2− 10 nm, such that electric field induced by n-Si and p-Si layers significantly af-

fects potential distribution in the pore, and consequently pore ionic conductivity.

We demonstrate how variable voltages at the semiconductor layers Vn and Vp allow

us to manipulate the potential, changing the pore potential landscape, which gives

rise to ohmic (linear) or diode-like ionic current-voltage characteristics.

The data we obtained show a clear difference between current-voltage characteris-

tics for pores with different diameters D. At the same time, the effect of the charge

situated in the membrane as well as due to applied potential bias, doping, surface,

etc. can also be significant. We find that the single-conical membrane with a nar-

row pore opening on the n-Si side allows for a wider range of potential variation in
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the pore, and as such, can be better suited to exert control over a single molecule

translocating through the pore. This is the case for our relatively small pores, diam-

eter of which is comparable to the Debye length for physiological solution strengths

(1 mM − 1 M).

Poisson-Nernst-Planck problem

In Chapter 5, the PNP approach was applied to simulate several devices with quite

distinctive properties. Firstly, we tested the double-layered membrane from the

Electrostatic problem, for which the 1D methods of current calculation were com-

pared to the results of the 3D PNP method. The normalized RMS deviations (see

Table 5.1) rarely exceed 10%, and only for SCn geometry they are larger than 20%.

After that, we checked the PNP method on the dielectric membrane, and then fo-

cused on the oxide – n-Si – oxide membrane, which was designed to resemble field-

effect transistors from the traditional semiconductor electronics. We have shown

that our ionic transistor has characteristics similar to MOSFETs, however more sys-

tematic investigation is necessary to determine details about the device behavior,

and its capabilities to control ionic current. Different geometries and membrane

structures must be tested. Our preliminary simulation results reveal that the double-

conical geometry does not work very well for such a device, probably, because con-

centration of K+ is not large enough in the channel. Nevertheless, research work in

this direction may be productive, and new interesting results may be found.
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Appendix A

Comparison of I-V curves obtained

from 1D and 3D methods, and the

quantitative estimation of their

difference.

This plots correspond to the data shown in the Table 5.1.
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Figure A.1: Cylindrical geometry.
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Figure A.2: Double-conical geometry, D = 6 nm.
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Figure A.3: Single-conical (SCn) geometry, D = 6 nm.
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Figure A.4: Single-conical (SCp) geometry, D = 6 nm.
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