Controlled Evolution of Collaborative Networks: Is it a Good Idea?

Alexey Nikolaev, Saad Mneimneh, Amotz Bar-Noy, CUNY, New York, NY. **Ram Ramanathan**, BBN, Cambridge, MA. **email:** anikolaev@gradcenter.cuny.edu (Research supported by Army Research Lab Network Science CTA.)

Simplicial complex networks

Abstract symplicial complex (SC) is a collection of sets Δ with the property that if a set $F \in \Delta$, then all subsets of F belong to Δ as well. A set $F \in \Delta$ is called a **face** of the complex. And a **facet** of a complex is a maximal face that is not contained in any other faces.

Graphs are a special case of SCs containing *sets of size at most 2* (i.e. nodes and edges).

In this work, **collaborating teams are modeled as facets** of the SC. Thus collaborations of any size can be captured.

Guided network growth model

- Metric-guided Network growth procedure:
- Start with a simplicial complex with one node.
- Sample three RANDOM MUTATIONS of the current state of the network, and proceed with the one that maximizes the metric.
- Repeat until the stopping condition is met.

Guided by M4

Neutral

Guiding metrics:

Previously, the authors considered [1] the following performance-measuring functions (all sums over f go over all *facets* of the complex and d(v) denotes the facet degree of the node v). Now we use them to guide the network growth:

 $\mathbf{M1}(\Delta) = \prod_{\nu} \left(1 + \frac{1}{d(\nu)} \right)^{d(\nu)}$

Neutral network growth model

RANDOM MUTATION:

- with 25% probability: Add a new person to an existing team sampled uniformly at random.
- with 25% probability: Make a new team by taking a union of all people from two or more already existing teams, and sampling their subset.
- with 50% probability: **Split an existing team** into two, assigning the team members randomly.

NEUTRAL (NOT GUIDED BY A METRIC) NETWORK GROWTH PROCEDURE:

- Start with a simplicial complex with one node.
- Apply RANDOM MUTATION to the network until the stopping condition is met.

Stopping conditions: (a) when the network has been "mutated" the required number of times, or (b) when the number of nodes in the network reaches the required limit.

Degree distributions

Facet degree of a node is the number of facets (teams) the node belongs to. **Edge degree** of a node is its degree in the underlying graph (=the number of neighbors).

Figure 2: Some typical networks with 20 nodes generated with the metric-guided generation processes.

Degree distributions - Guided

Figure 1: Neutral (not guided) generation procedure. Facet degree distribution. Edge degree distribution. Facet size distribution. Obtained from a network generated in 8000 mutation operations.

How realistic this model is? Wikipedia talk pages discussions exhibit similar distribution properties:

Multitasking isTeams are formeddiscouraged. Alland split, theteams becameprocess isdisjoint, new teamambivalent, nomembers werespecific goal orintroduced.direction.

l Accumulation of new teams and members. **Not worried by overloading** with too many tasks.

Observed properties

The following table summarizes the properties of the metrics M1-M8 observed from statistics on large networks and from visual inspection of small networks of size 20.

Metric	Overlapping teams		# of teams	Team size	# of connect.	Allows single
	(and avg.	facet degee*)	(w.r.t. Neutral)	(w.r.t. Neutral)	components	big team
M1	yes	(1.66)	—	+	<i>few</i> (1–3)	_
M2	yes	(1.73)	—	+	few	—
M3	yes	(1.71)	+	0—**	some (2–6)	—
M4	по	(1.00)		+	some	yes
M5	okay	(1.31)		+	few	yes
M6	okay	(1.23)		+	few	yes
M7	no	(1.03)	+	—	many (> 10)	_
M8	yes!	(1.81)	—	+	few	yes

Table 1: (*) Average facet degree of a node is reported for small networks of size 20. For larger networks, M5 and M6 eventually catch up with M1-M3, but M8 still surpasses them all by the factor of 1.5–2. (**) The metric M3 slightly decreases the team sizes with respect to the neutral generation process.

References

