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Abstract
The concept of Infinite Time Turing Machine (ITTM) introduced by Hamkins and Lewis
[1] is an extension of conventional finite time Turing Machines (TM) to transfinite
ordinal running times. This computational model is strictly more powerful than classical
TMs, because the Halting Problem for classical TMs is decidable by ITTM. Interestingly,
ITTMs that are using only finite tape can be simulated on a conventional finite time
computer. We show how loops of repeating configurations can be identified and
reduced. Using this reduction algorithm, we implement an actual ITTM interpreter.
Using this method, some non-trivial ITTM computations can be simulated in finite time.
For example, such tasks as clocking ordinals can be simulated in finite time for any
ordinal less than ωω. Also, we show that the Halting Problem for ITTMs with finite tape
is decidable by classical finite time TM.

ITTMs run in transfinite ordinal
time:
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Limit ordinals
Non-zero ordinals that are not successors of any other
ordinal: ω, ω · 2, ω · 3, . . .ωω, . . .ωω+ω, ωω+ω · 2,
. . .ωω · 2, . . . , ωω
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Successor ordinals
Can be represented in the form α+ 1 (as a set, the
maximum element of a successor ordinal α+ 1 is α).

Counting time & Strong repeats
Definition 1. Let δC be the transition time from a
(possibly compound) configuration C to τ(C).
Lemma 1. (Loop Reduction). A loop of ITTM
configurations [Cs→ . . .→ Ct]ω s.t. τ(Ct) = Cs, can be
reduced to a compound configuration L, and its
transition time is

δL =
�

δCs+ . . .+δCt
�

·ω.

The order, in which δCi are added up is insignificant.
It is clear that loops may occure inside other loops,
that is how compound configurations can be nested
one into another. Similar looping behavior is also
discussed in [3].
Lemma 2. (“Strong” Repeat). ITTM does not halt if
τ(L) ∈ L.
Proof. Since transition L ¹¹Ë τ(L) repeats all
configurations of L infinitely many times, and the
resulting limit configuration τ(L) is nevertheless in L,
nothing new can happen to the machine any more. All
possible changes to the tape have happened infinitely
many times already, and repeating them again does
not change limit configuration, thus this is a “strong”
repeat indeed.
Using these two lemmas, we can construct a reduction
algorithm, which can simulate the ITTMs that do not
need an infinite tape for computation. “Strongly”
repeating non-terminating configurations can be
identified. In fact, the Halting problem of the ITTMs
with finite tape is decidable by a finite time TM.

ITTM at succesor ordinal times

is equivalent to Classical TM
Instructions are quintuples (q, s)→ (q′, s′, a).
States q ∈Q, Q is finite. Symbols s ∈ Σ = {0, 1}.
Actions a ∈ A= {L, S, R}.
The tape is infinite to the right. At moment t, the i th

cell is Ti(t) and the head position is H(t).

ITTM at limit ordinal time t
As defined by J. D. Hamkins and A. Lewis in [1]:

head position H(t) = 0,

state Q(t) = LIMIT,

i th cells of the tape Ti(t) = limsup
s→t

Ti(s).

So, after infnitely many steps:
1) the head goes to the beginning of the tape,
2) the machine is in the special LIMIT state,
3) unstabilized cells of the tape become equal to 1.

How to run an ITTM in finite time?
Configuration of the machine at time t is

C(t) = 〈Q(t), H(t), T (t)〉.
Call such configurations simple.
Transition function

τ : C(t) 7→ C(t + 1).

Compound configuration (loop) is a set of simple
configuration.
Transition function for loops

τ : L 7→ C ,

where C is a simple configuration.

Why is it possible?
•When you get into configuration Ci ∈ L,

where L is a compound configuration
(i.e. an infinite loop), then you will visit
all C j ∈ L infinitely many times.

•The “entry point” into L does not matter.

• If a compound configuration L contains
only finitely-many simple configurations,
we can produce the corresponding limit
configuration in finite time (just
bitwise-OR the tapes of all C j ∈ L and
you are done).

Definition 2. An ordinal α is called ITTM-clockable, if
there is an ITTM program, which on input 0 halts in
exactly α many steps of computation, that is, the αth

step is the act of changing to the HALT state.

The Idea

Algorithm 1. (Reduction Algorithm).

RUN(τ, ∅→ Cini t), where

function RUN(τ, S→ C)
if C is a non-compound configuration then

C ′← τ(C)
else

C ′← ATLIMIT(C)
if C ′ ∈ C then

(This is a strong repeat!) return “Does not halt!”
end if

end if
if C ′ = CHALT then return C ′

else
S′← REDUCE(S→ C → C ′)
RUN(τ, S′)

end if
end function

function REDUCE(S→ C)
if C is found in the list S then

Find sequences before and after the repeat:
Sbefore and Safter, such that S = (Sbefore→ R) + Safter, and (C ∈ R or C = R)
L← MERGE((∅→ R) + Safter)
return Sbefore→ L

else
return S→ C

end if
end function

function ATLIMIT(L)
return the limit configuration of the infinitely
repeating compound configuration L

end function

← Notation
Note, that the sequence of configurations
C0→ C1→ . . .→ Cn is in fact a list, with symbol (→)
being a left-associative list construction operator, (i.e.
Tail→ Head). Let ∅ be the empty list, and (+) be the
operator of list concatenation.

Example. Clocking ω4

(Q0, x)→ (Q1, x , R) (move to the right)

(Q1, x)→ (Q10, x , R) (move to the right again)

(Q10, 1)→ (Q10, 0, L) (while on a 1, zero it and move to the left)

(Q10, 0)→ (Q11, 1, S) (flash on ...)

(Q11, 1)→ (Q99, 0, S) (... and off)

(Q99, x)→ (Q99, x , S) (just wait)

(LIMIT, 0)→ (Q0, 0, S) (at the limit, you either start over...)

(LIMIT, 1)→ (HALT, 1, S) (... or halt)

Conclusion
We propose a method to simulate ITTMs in finite time,
if they use only finite tape, i.e. its computation goes
through only finite number of configurations.
Computation time can be correctly counted by this
simulation. The Halting problem of such ITTMs is
decidable by finite time TM (we identify strongly
reapeating configurations), so only relatively weak
ITTMs can be simulated. Nevertheless, we are able to
perform some intrinsically infinite-time programs, for
example, we can simulate ITTMs clocking ordinals
α <ωω.References
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