
Pointers
A pointer to a variable is the address in the memory of that variable.

int ten = 10; // declare an integer variableint *p = &ten; // get a pointer to the variable

cout << p << end; // print the pointer (memory address)

cout << *p << endl; // print the value the pointer points to
// (dereferencing the pointer p)

&x is the address of the variable x
*p dereferences the pointer p

(returns the value the pointer p points at)

1

Pointers

What’s the difference between the following three assignments?

int x = 1;
// 1int *p1 = &x;
// 2int *p2;*p2 = &x;
// 3int *p3;p3 = &x;

2

Pointers

What’s the difference between the following three assignments?

int x = 1;
// 1int *p1 = &x;
// 2int *p2;*p2 = &x; // error: (*p2) is an integer,

// not a pointer
// 3int *p3;p3 = &x;

3

Allocating in the heap

• if we need to allocate a lot of memory (for example large arrays)
• if we want to create and return a big object from a function, and

making additional copies is not an option. (references do mitigate
the issue in C++)

double *pd = new double; // allocated in the heap
// using the operator new

*pd = 1.234; // assign some value

cout << *pd; // 1.234

delete pd; // release the memory

4

Allocating in the heap

One can combine memory allocation in the heap and a constructor call:

double *d = new double(1.234);cout << *d + 1;delete d;
MyClass obj(127, "ABC");obj.print();
MyClass *obj2 = new MyClass(128, "DEFH");(*obj2).print();
delete obj2;

5

The arrow operator (->)
Instead of (*Obj).member , you can write Obj->member

It is added for convenience, because pointers are very common, and this
additional “syntactic sugar” makes the code more readable.

MyClass *obj2 = new MyClass(128, "DEFH");
(*obj2).print();
obj2 -> print(); // equivalent

delete obj2;

6

The following program crashes. Why?

#include <iostream>
using namespace std;
int f() {int data [10000000];data[0] = 1;return data[0];}
int main() {f();}

7

Dynamic array allocation

int n;cin >> n; // ask the user to choose the size of the array

double *arr = new double[n]; // allocate the array
// in the heap

for(int i = 0; i < n; i++){arr[i] = i;cout << arr[i] << ’ ’;}
delete[] arr; // deallocate it

The size of a dynamically array can be bigger than the size of an array
you can allocate in the stack

8

Dynamically allocated 2D array

int n; cin >> n;
double **arr = new double* [n];for(int i = 0; i < n; i++)arr[i] = new double[n];
for(int i = 0; i < n; i++) {for(int j = 0; j < n; j++) {arr[i][j] = i+j; cout << arr[i][j] << ’\t’;}cout << endl;}
for(int i = 0; i < n; i++)delete[] arr[i];
delete[] arr;

9

The following program crashes. Why?

#include <iostream>
using namespace std;
int f() {return f();}
int main() {f();}

10

The following program crashes. Why?

#include <iostream>#include <cstdlib>using namespace std;
int f() {int *x = new int(123);while(*x >= 100) {x = new int;

*x = 100 + rand() % 2;}return *x;}
int main() {f();}

11

Classes that themselves allocate in the heap

If a class or structure (for example in its constructor) allocates some
memory in the heap, this memory should be deallocated when the
object gets “destroyed” (e.g.) when the program execution leaves the
scope where the varaible is defined

In C++, the user can create a so called destructor, the function that will
be called automatically when the object passes out of scope.

12

Classes that themselves allocate in the heap

"Rule of 3": If a class defines one of the following it should probably
explicitly define all three:

• destructor
• copy constructor
• copy assignment operator

In C++11, things got a bit crazier, and there is “Rule of 5”

13

